cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A060311 Expansion of e.g.f. exp((exp(x)-1)^2/2).

Original entry on oeis.org

1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
Offset: 0

Views

Author

Vladeta Jovovic, Mar 27 2001

Keywords

Comments

After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005
a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.

Crossrefs

Column k=2 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
    
  • PARI
    { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.
(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).
(End)
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(2^k * k!). - Seiichi Manyama, May 07 2022

A353664 Expansion of e.g.f. exp((exp(x) - 1)^3).

Original entry on oeis.org

1, 0, 0, 6, 36, 150, 900, 9366, 101556, 1031190, 10995300, 134640726, 1844184276, 26656678230, 400614423300, 6347263038486, 106960986110196, 1905688502565270, 35546025523227300, 691014283378745046, 13999772792477879316, 295570215436360196310
Offset: 0

Views

Author

Seiichi Manyama, May 07 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^3)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/(k!*prod(j=1, 3*k, 1-j*x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 3, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/k!);

Formula

G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/(k! * Product_{j=1..3*k} (1 - j * x)).
a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/k!.

A353665 Expansion of e.g.f. exp((exp(x) - 1)^4).

Original entry on oeis.org

1, 0, 0, 0, 24, 240, 1560, 8400, 60984, 912240, 15938520, 242998800, 3300493944, 44583979440, 690641504280, 12868117189200, 264164524958904, 5481631005177840, 112822632387018840, 2367468210865875600, 52624238539033647864, 1258531092544541563440
Offset: 0

Views

Author

Seiichi Manyama, May 07 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^4)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(k!*prod(j=1, 4*k, 1-j*x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/k!);

Formula

E.g.f.: exp((exp(x) - 1)^4).
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/(k! * Product_{j=1..4*k} (1 - j * x)).
a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/k!.

A357024 E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2.

Original entry on oeis.org

1, 0, 2, 6, 74, 750, 11402, 195006, 3994202, 93164910, 2455754762, 72098755806, 2333497474970, 82569245246670, 3170700672801482, 131342693516044926, 5837883571730770778, 277151780512413426990, 13997018265350140886282, 749304617892345721184286
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/k!);

Formula

a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * Stirling2(n,2*k)/k!.

A357869 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j)/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 2, 5, 0, 1, 0, 0, 6, 15, 0, 1, 0, 0, 6, 26, 52, 0, 1, 0, 0, 0, 36, 150, 203, 0, 1, 0, 0, 0, 24, 150, 962, 877, 0, 1, 0, 0, 0, 0, 240, 900, 6846, 4140, 0, 1, 0, 0, 0, 0, 120, 1560, 9366, 54266, 21147, 0, 1, 0, 0, 0, 0, 0, 1800, 8400, 101556, 471750, 115975, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1, ...
  0,  1,   0,   0,   0,   0, ...
  0,  2,   2,   0,   0,   0, ...
  0,  5,   6,   6,   0,   0, ...
  0, 15,  26,  36,  24,   0, ...
  0, 52, 150, 150, 240, 120, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000110, A052859, A353664, A353665.

Programs

  • PARI
    T(n, k) = sum(j=0, n, (k*j)!*stirling(n, k*j, 2)/j!);
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(exp((exp(x+x*O(x^n))-1)^k), n));

Formula

For k > 0, e.g.f. of column k: exp((exp(x) - 1)^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * Stirling2(j,k) * T(n-j,k).

A086660 Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).

Original entry on oeis.org

1, 0, -2, -6, -2, 90, 598, 1554, -10082, -164310, -1101242, -1496286, 64767118, 965876730, 7104497398, 57428274, -856472198402, -14195316779190, -122409183339482, 25272908324034, 21770258523698158
Offset: 0

Views

Author

Vladeta Jovovic, Sep 12 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k]HermiteH[k,0],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 24 2013 *)
    With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ G. C. Greubel, Jul 12 2018
    

Formula

E.g.f.: exp(-(exp(x)-1)^2).

A357009 E.g.f. satisfies log(A(x)) = (exp(x) - 1)^2 * A(x).

Original entry on oeis.org

1, 0, 2, 6, 50, 390, 4322, 53046, 782210, 12920550, 241747682, 5000171286, 113961184130, 2830240421190, 76196913418082, 2209152734071926, 68655746019566210, 2276606079902438310, 80244521295497399522, 2995966456305973559766, 118119901491333724203650
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[(-1 + Exp[x])^2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*(k+1)^(k-1)*stirling(n, 2*k, 2)/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(exp(x)-1)^(2*k)/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-(exp(x)-1)^2))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-(exp(x)-1)^2)/(exp(x)-1)^2))

Formula

a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (k+1)^(k-1) * Stirling2(n,2*k)/k!.
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (exp(x) - 1)^(2*k) / k!.
E.g.f.: A(x) = exp( -LambertW(-(exp(x) - 1)^2) ).
E.g.f.: A(x) = -LambertW(-(exp(x) - 1)^2)/(exp(x) - 1)^2.
a(n) ~ sqrt(1 + exp(1/2)) * 2^n * n^(n-1) / (exp(n-1) * (2*log(1 + exp(1/2)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Sep 27 2023

A375773 Expansion of e.g.f. exp((exp(x) - 1)^5).

Original entry on oeis.org

1, 0, 0, 0, 0, 120, 1800, 16800, 126000, 834120, 6917400, 129399600, 3259080000, 72252300120, 1370602233000, 23218349918400, 377834084082000, 6709735404918120, 147369456297228600, 3899127761438053200, 109421543771265852000, 3002806840023201408120
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^5)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=120*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/k!);

Formula

G.f.: Sum_{k>=0} (5*k)! * x^(5*k)/(k! * Product_{j=1..5*k} (1 - j * x)).
a(0) = 1; a(n) = 120 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/k!.
Showing 1-8 of 8 results.