A357025
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^3.
Original entry on oeis.org
1, 0, 0, 6, 36, 150, 3060, 62286, 867636, 15591750, 419764500, 10834588446, 277719263316, 8580282719190, 297021183388020, 10459810717672686, 393932179466738676, 16351788886638987750, 717798906181149294420, 32905220431196072057406
Offset: 0
-
a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*stirling(n, 3*k, 2)/k!);
A357009
E.g.f. satisfies log(A(x)) = (exp(x) - 1)^2 * A(x).
Original entry on oeis.org
1, 0, 2, 6, 50, 390, 4322, 53046, 782210, 12920550, 241747682, 5000171286, 113961184130, 2830240421190, 76196913418082, 2209152734071926, 68655746019566210, 2276606079902438310, 80244521295497399522, 2995966456305973559766, 118119901491333724203650
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(-1 + Exp[x])^2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(k+1)^(k-1)*stirling(n, 2*k, 2)/k!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(exp(x)-1)^(2*k)/k!)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-(exp(x)-1)^2))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-(exp(x)-1)^2)/(exp(x)-1)^2))
A357031
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2 / 2.
Original entry on oeis.org
1, 0, 1, 3, 22, 195, 2131, 28623, 445789, 7982355, 161208976, 3626200743, 89942239861, 2438520508515, 71754865476841, 2277574224716703, 77570723071721938, 2821841221403098995, 109200125293424385271, 4479379126010806153143, 194148151869063307919725
Offset: 0
-
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2/2] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/(2^k*k!));
A357084
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1)^2 * A(x).
Original entry on oeis.org
1, 0, 2, 6, 98, 990, 19082, 347046, 8512226, 220737390, 6776521082, 225532370646, 8413133799314, 339965749171230, 14995100013227882, 711308930246853126, 36278600375671552322, 1974411768891211652430, 114394542828023045764442
Offset: 0
-
a(n) = sum(k=0, n\2, (2*k)!*(n+k+1)^(k-1)*stirling(n, 2*k, 2)/k!);
Showing 1-4 of 4 results.