A357024
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2.
Original entry on oeis.org
1, 0, 2, 6, 74, 750, 11402, 195006, 3994202, 93164910, 2455754762, 72098755806, 2333497474970, 82569245246670, 3170700672801482, 131342693516044926, 5837883571730770778, 277151780512413426990, 13997018265350140886282, 749304617892345721184286
Offset: 0
-
m = 20; (* number of terms *)
A[_] = 0;
Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/k!);
A357010
E.g.f. satisfies log(A(x)) = (exp(x) - 1)^3 * A(x).
Original entry on oeis.org
1, 0, 0, 6, 36, 150, 1620, 24486, 293076, 3843510, 68254740, 1311687366, 25479935316, 552545882070, 13437670215060, 345157499363046, 9370414233900756, 274413997443811830, 8572526271218671380, 281754864204797848326, 9767868351458229261396
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(Exp[x] - 1)^3*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
-
a(n) = sum(k=0, n\3, (3*k)!*(k+1)^(k-1)*stirling(n, 3*k, 2)/k!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(exp(x)-1)^(3*k)/k!)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-(exp(x)-1)^3))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-(exp(x)-1)^3)/(exp(x)-1)^3))
Showing 1-2 of 2 results.