cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324162 Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Examples

			T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    2,    1;
  0,    5,    3,    1;
  0,   15,   10,    6,    1;
  0,   52,   45,   25,   10,    1;
  0,  203,  241,  100,   65,   15,   1;
  0,  877, 1428,  511,  350,  140,  21,  1;
  0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000110 (for n>0), A060311, A327504, A327505, A327506, A327507, A327508, A327509, A327510, A327511.
Row sums give A324238.
T(2n,n) gives A324241.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
          T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    nmax = 10;
    col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
    T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
  • PARI
    T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. of column k>0: exp((exp(x)-1)^k/k!).
Sum_{k=1..n} k * T(n,k) = A325929(n).
T(n,k) = Sum_{j=0..floor(n/k)} (k*j)! * Stirling2(n,k*j)/(k!^j * j!) for k > 0. - Seiichi Manyama, May 07 2022

A347004 Expansion of e.g.f. exp( -log(1 - x)^5 / 5! ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269451, 3423860, 46238280, 664233856, 10143487354, 164423078456, 2823768543960, 51272283444264, 982177492263750, 19807082824819374, 419629806223448346, 9320808413229618816, 216645165604679499072, 5259724543984442886486
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[-Log[1 - x]^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 5]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*abs(stirling(n, 5*k, 1))/(120^k*k!)); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,5)| * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * |Stirling1(n,5*k)|/(120^k * k!). - Seiichi Manyama, May 06 2022

A346920 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,5) * a(n-k).
a(n) ~ n! / (5*(1 + 120^(-1/5)) * log(1 + 120^(1/5))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 09 2022: (Start)
G.f.: Sum_{k>=0} (5*k)! * x^(5*k)/(120^k * Product_{j=1..5*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/120^k. (End)

A346977 Expansion of e.g.f. log( 1 + (exp(x) - 1)^5 / 5! ).

Original entry on oeis.org

1, 15, 140, 1050, 6951, 42399, 239800, 1164570, 2553551, -54771717, -1384474728, -23286667950, -339924740609, -4554547609233, -56481301888144, -630768487283886, -5665064764515849, -18095553874845909, 924820173031946752, 35413415495503624986
Offset: 5

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
    a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]

Formula

a(n) = Stirling2(n,5) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,5) * k * a(k).
a(n) ~ -(n-1)! * 2^(1+n) * 5^n * cos(n*arctan((2*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))) / log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))) / (100*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))^2 + (5*log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))^2)^(n/2). - Vaclav Kotesovec, Aug 10 2021
a(n) = Sum_{k=1..floor(n/5)} (-1)^(k-1) * (5*k)! * Stirling2(n,5*k)/(k * 120^k). - Seiichi Manyama, Jan 23 2025

A354398 Expansion of e.g.f. exp( -(exp(x) - 1)^5 / 120 ).

Original entry on oeis.org

1, 0, 0, 0, 0, -1, -15, -140, -1050, -6951, -42399, -239800, -1164570, -2553551, 54771717, 1384600854, 23301803070, 340911045929, 4600861076433, 58236569430172, 687816515641206, 7315220762286129, 61629305427537309, 140107851269900954, -11001310744922517426
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-(Exp[x]-1)^5/120],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^5/120)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/((-120)^k*k!));

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/((-120)^k * k!).

A346955 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^5 / 5! ).

Original entry on oeis.org

1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806513072, 25539589530, 355175465191, 4797717669123, 63797550625676, 860468790181686, 12275324511112971, 192498455326842819, 3353266112959628272, 63379650000684213834
Offset: 5

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
    a[n_] := a[n] = StirlingS2[n, 5] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]

Formula

a(n) = Stirling2(n,5) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,5) * k * a(k).
a(n) ~ (n-1)! / (log(120^(1/5) + 1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/5)} (5*k)! * Stirling2(n,5*k)/(k * 120^k). - Seiichi Manyama, Jan 23 2025

A354137 Expansion of e.g.f. exp(log(1 + x)^5/120).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, -15, 175, -1960, 22449, -269199, 3410000, -45753180, 650179816, -9771920158, 155020385156, -2589888417480, 45461879164584, -836540418765834, 16099972965770778, -323385447259166454, 6764948641797695496, -147088325599708573080
Offset: 0

Views

Author

Seiichi Manyama, May 18 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(log(1+x)^5/120)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1)/(120^k*k!));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling1(n,5*k)/(120^k * k!).
Showing 1-7 of 7 results.