A324162
Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 5, 3, 1;
0, 15, 10, 6, 1;
0, 52, 45, 25, 10, 1;
0, 203, 241, 100, 65, 15, 1;
0, 877, 1428, 511, 350, 140, 21, 1;
0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
...
Columns k=0-10 give:
A000007,
A000110 (for n>0),
A060311,
A327504,
A327505,
A327506,
A327507,
A327508,
A327509,
A327510,
A327511.
-
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
nmax = 10;
col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
-
T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
A347004
Expansion of e.g.f. exp( -log(1 - x)^5 / 5! ).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269451, 3423860, 46238280, 664233856, 10143487354, 164423078456, 2823768543960, 51272283444264, 982177492263750, 19807082824819374, 419629806223448346, 9320808413229618816, 216645165604679499072, 5259724543984442886486
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[-Log[1 - x]^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 5]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
a(n) = sum(k=0, n\5, (5*k)!*abs(stirling(n, 5*k, 1))/(120^k*k!)); \\ Seiichi Manyama, May 06 2022
A346920
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0
-
nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022
A346977
Expansion of e.g.f. log( 1 + (exp(x) - 1)^5 / 5! ).
Original entry on oeis.org
1, 15, 140, 1050, 6951, 42399, 239800, 1164570, 2553551, -54771717, -1384474728, -23286667950, -339924740609, -4554547609233, -56481301888144, -630768487283886, -5665064764515849, -18095553874845909, 924820173031946752, 35413415495503624986
Offset: 5
-
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]
A354398
Expansion of e.g.f. exp( -(exp(x) - 1)^5 / 120 ).
Original entry on oeis.org
1, 0, 0, 0, 0, -1, -15, -140, -1050, -6951, -42399, -239800, -1164570, -2553551, 54771717, 1384600854, 23301803070, 340911045929, 4600861076433, 58236569430172, 687816515641206, 7315220762286129, 61629305427537309, 140107851269900954, -11001310744922517426
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[-(Exp[x]-1)^5/120],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^5/120)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/((-120)^k*k!));
A346955
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^5 / 5! ).
Original entry on oeis.org
1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806513072, 25539589530, 355175465191, 4797717669123, 63797550625676, 860468790181686, 12275324511112971, 192498455326842819, 3353266112959628272, 63379650000684213834
Offset: 5
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS2[n, 5] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]
A354137
Expansion of e.g.f. exp(log(1 + x)^5/120).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, -15, 175, -1960, 22449, -269199, 3410000, -45753180, 650179816, -9771920158, 155020385156, -2589888417480, 45461879164584, -836540418765834, 16099972965770778, -323385447259166454, 6764948641797695496, -147088325599708573080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(log(1+x)^5/120)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1)/(120^k*k!));
Showing 1-7 of 7 results.