cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A327504 Number of set partitions of [n] where each subset is again partitioned into three nonempty subsets.

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 100, 511, 3626, 29765, 250200, 2146771, 19575446, 195336505, 2124840900, 24646324431, 299803782466, 3809251939245, 50698296967600, 708349718638891, 10372758309704686, 158546862369781985, 2519789706502636700, 41545703617137280551
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=3 of A324162.
Cf. A346894.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 3), j=3..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j -1] StirlingS2[j, 3], {j, 3, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(6^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^3/3!).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(6^k * k!). - Seiichi Manyama, May 07 2022

A346895 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,4) * a(n-k).
a(n) ~ n! / (4*(1 + 2^(-3/4)*3^(-1/4)) * log(1 + 2^(3/4)*3^(1/4))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/(24^k * Product_{j=1..4*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/24^k. (End)

A346922 Expansion of e.g.f. 1 / (1 + log(1 - x)^3 / 3!).

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 245, 2044, 19572, 210524, 2513760, 33012276, 472963876, 7340889192, 122703087416, 2197496734224, 41979155247520, 852063971170960, 18312093589455440, 415420659953439840, 9920128280950954080, 248735658391768241280, 6533773435848445617600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + Log[1 - x]^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^3/3!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/6^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,3)| * a(n-k).
a(n) ~ n! * 6^(1/3) / (3 * exp(6^(1/3)) * (1 - exp(-6^(1/3)))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|/6^k. - Seiichi Manyama, May 06 2022

A330047 Expansion of e.g.f. exp(-x) / (1 - sinh(x)).

Original entry on oeis.org

1, 0, 1, 3, 13, 75, 511, 4053, 36793, 375735, 4262971, 53203953, 724379173, 10684377795, 169713810631, 2888340723453, 52433443111153, 1011340189494255, 20654264750645491, 445249365444296553, 10103533212012216733, 240731286454287293115, 6008902898851584479551
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Comments

Inverse binomial transform of A006154.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[-x]/(1 - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^2/2))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(2^k*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 2, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/2^k); \\ Seiichi Manyama, May 07 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * A006154(k).
a(n) ~ n! / ((2 + sqrt(2)) * (log(1 + sqrt(2)))^(n+1)). - Vaclav Kotesovec, Dec 03 2019
From Seiichi Manyama, May 07 2022: (Start)
E.g.f.: 1/(1 - (exp(x) - 1)^2 / 2).
G.f.: Sum_{k>=0} (2*k)! * x^(2*k)/(2^k * Product_{j=1..2*k} (1 - j * x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,2) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/2^k. (End)
a(0) = 1; a(n) = (-1)^n + Sum_{k=1..ceiling(n/2)} binomial(n,2*k-1) * a(n-2*k+1). - Prabha Sivaramannair, Oct 06 2023

A353774 Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3).

Original entry on oeis.org

1, 0, 0, 6, 36, 150, 1260, 16926, 197316, 2286150, 32821020, 548528046, 9515702196, 174531124950, 3521913283980, 76969474578366, 1777400236160676, 43405229295464550, 1126972561394470140, 30949983774936839886, 893095888222540548756, 27035433957000465352950
Offset: 0

Views

Author

Seiichi Manyama, May 07 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^3)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/prod(j=1, 3*k, 1-j*x)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2));

Formula

G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/Product_{j=1..3*k} (1 - j * x).
a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k).
a(n) ~ n! / (6 * log(2)^(n+1)). - Vaclav Kotesovec, May 08 2022

A346920 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,5) * a(n-k).
a(n) ~ n! / (5*(1 + 120^(-1/5)) * log(1 + 120^(1/5))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 09 2022: (Start)
G.f.: Sum_{k>=0} (5*k)! * x^(5*k)/(120^k * Product_{j=1..5*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/120^k. (End)

A353884 Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^3 / 36).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 20, 210, 1400, 7560, 36120, 159390, 1035100, 17082780, 329893564, 5336661330, 73265956400, 889068944400, 9968073461616, 112902000191334, 1531070090032500, 27610559023112100, 586336131631313140, 12550716321612658266, 254052845940651258600
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^3/36)))
    
  • PARI
    a(n) = n!*sum(k=0, n\6, (3*k)!*stirling(n-3*k, 3*k, 2)/(36^k*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/6)} (3*k)! * Stirling2(n-3*k,3*k)/(36^k * (n-3*k)!).

A354392 Expansion of e.g.f. 1/(1 + (exp(x) - 1)^3 / 6).

Original entry on oeis.org

1, 0, 0, -1, -6, -25, -70, 119, 4354, 48215, 371610, 1620839, -10665886, -388969945, -6114636710, -65181228841, -325375497726, 5950049261495, 226564100074970, 4447402833379079, 57902620204276834, 258292327155958535, -12701483290229413350
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(exp(x)-1)^3/6)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(-6)^k);

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(-6)^k.

A346390 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).

Original entry on oeis.org

1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021

Formula

a(n) = Stirling2(n,3) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,3) * k * a(k).
a(n) ~ (n-1)! / (log(6^(1/3)+1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(k * 6^k). - Seiichi Manyama, Jan 23 2025

A354134 Expansion of e.g.f. 1/(1 - log(1 + x)^3/6).

Original entry on oeis.org

1, 0, 0, 1, -6, 35, -205, 1204, -6692, 29084, 17160, -3069924, 61356724, -959574408, 13499619224, -174983776176, 2029529618080, -18417948918640, 36189097244720, 4235753092128480, -157628320980720480, 4166967770825777280, -95152715945973322560
Offset: 0

Views

Author

Seiichi Manyama, May 18 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3/6)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)/6^k);

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling1(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling1(n,3*k)/6^k.
Showing 1-10 of 10 results.