A327504
Number of set partitions of [n] where each subset is again partitioned into three nonempty subsets.
Original entry on oeis.org
1, 0, 0, 1, 6, 25, 100, 511, 3626, 29765, 250200, 2146771, 19575446, 195336505, 2124840900, 24646324431, 299803782466, 3809251939245, 50698296967600, 708349718638891, 10372758309704686, 158546862369781985, 2519789706502636700, 41545703617137280551
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 3), j=3..n))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j -1] StirlingS2[j, 3], {j, 3, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(6^k*k!)); \\ Seiichi Manyama, May 07 2022
A346895
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022
A346922
Expansion of e.g.f. 1 / (1 + log(1 - x)^3 / 3!).
Original entry on oeis.org
1, 0, 0, 1, 6, 35, 245, 2044, 19572, 210524, 2513760, 33012276, 472963876, 7340889192, 122703087416, 2197496734224, 41979155247520, 852063971170960, 18312093589455440, 415420659953439840, 9920128280950954080, 248735658391768241280, 6533773435848445617600
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 + Log[1 - x]^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^3/3!))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/6^k); \\ Seiichi Manyama, May 06 2022
A330047
Expansion of e.g.f. exp(-x) / (1 - sinh(x)).
Original entry on oeis.org
1, 0, 1, 3, 13, 75, 511, 4053, 36793, 375735, 4262971, 53203953, 724379173, 10684377795, 169713810631, 2888340723453, 52433443111153, 1011340189494255, 20654264750645491, 445249365444296553, 10103533212012216733, 240731286454287293115, 6008902898851584479551
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[-x]/(1 - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^2/2))) \\ Seiichi Manyama, May 07 2022
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(2^k*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 2, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/2^k); \\ Seiichi Manyama, May 07 2022
A353774
Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3).
Original entry on oeis.org
1, 0, 0, 6, 36, 150, 1260, 16926, 197316, 2286150, 32821020, 548528046, 9515702196, 174531124950, 3521913283980, 76969474578366, 1777400236160676, 43405229295464550, 1126972561394470140, 30949983774936839886, 893095888222540548756, 27035433957000465352950
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^3)))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/prod(j=1, 3*k, 1-j*x)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2));
A346920
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0
-
nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022
A353884
Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^3 / 36).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 20, 210, 1400, 7560, 36120, 159390, 1035100, 17082780, 329893564, 5336661330, 73265956400, 889068944400, 9968073461616, 112902000191334, 1531070090032500, 27610559023112100, 586336131631313140, 12550716321612658266, 254052845940651258600
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^3/36)))
-
a(n) = n!*sum(k=0, n\6, (3*k)!*stirling(n-3*k, 3*k, 2)/(36^k*(n-3*k)!));
A354392
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^3 / 6).
Original entry on oeis.org
1, 0, 0, -1, -6, -25, -70, 119, 4354, 48215, 371610, 1620839, -10665886, -388969945, -6114636710, -65181228841, -325375497726, 5950049261495, 226564100074970, 4447402833379079, 57902620204276834, 258292327155958535, -12701483290229413350
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(exp(x)-1)^3/6)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(-6)^k);
A346390
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).
Original entry on oeis.org
1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3
-
nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021
A354134
Expansion of e.g.f. 1/(1 - log(1 + x)^3/6).
Original entry on oeis.org
1, 0, 0, 1, -6, 35, -205, 1204, -6692, 29084, 17160, -3069924, 61356724, -959574408, 13499619224, -174983776176, 2029529618080, -18417948918640, 36189097244720, 4235753092128480, -157628320980720480, 4166967770825777280, -95152715945973322560
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3/6)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)/6^k);
Showing 1-10 of 10 results.
Comments