cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A346894 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^3 / 3!).

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 110, 721, 6286, 57625, 541470, 5558641, 64351166, 819480025, 11140978030, 160711583761, 2472834185646, 40597082635225, 706816137889790, 12974021811748081, 250395124862965726, 5074637684604691225, 107798916619788396750
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - (Exp[x] - 1)^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/(6^k*prod(j=1, 3*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/6^k); \\ Seiichi Manyama, May 07 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).
a(n) ~ n! / (3*(1 + 6^(-1/3)) * log(1 + 6^(1/3))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/(6^k * Product_{j=1..3*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/6^k. (End)

A346895 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,4) * a(n-k).
a(n) ~ n! / (4*(1 + 2^(-3/4)*3^(-1/4)) * log(1 + 2^(3/4)*3^(1/4))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/(24^k * Product_{j=1..4*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/24^k. (End)

A346921 Expansion of e.g.f. 1 / (1 - log(1 - x)^2 / 2).

Original entry on oeis.org

1, 0, 1, 3, 17, 110, 874, 8064, 85182, 1012248, 13369026, 194245590, 3079135806, 52880064588, 978038495316, 19381794788160, 409702099828104, 9201877089355584, 218832476773294008, 5493266481129425064, 145153549897858762776, 4027310838211114515600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - Log[1 - x]^2/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^2/2))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/2^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,2)| * a(n-k).
a(n) ~ n! * exp(sqrt(2)*n) / (sqrt(2) * (exp(sqrt(2)) - 1)^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * |Stirling1(n,2*k)|/2^k. - Seiichi Manyama, May 06 2022

A060311 Expansion of e.g.f. exp((exp(x)-1)^2/2).

Original entry on oeis.org

1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
Offset: 0

Views

Author

Vladeta Jovovic, Mar 27 2001

Keywords

Comments

After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005
a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.

Crossrefs

Column k=2 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
    
  • PARI
    { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.
(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).
(End)
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(2^k * k!). - Seiichi Manyama, May 07 2022

A346920 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,5) * a(n-k).
a(n) ~ n! / (5*(1 + 120^(-1/5)) * log(1 + 120^(1/5))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 09 2022: (Start)
G.f.: Sum_{k>=0} (5*k)! * x^(5*k)/(120^k * Product_{j=1..5*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/120^k. (End)

A354391 Expansion of e.g.f. 1/(1 + (exp(x) - 1)^2 / 2).

Original entry on oeis.org

1, 0, -1, -3, -1, 45, 269, 147, -11341, -101055, -73711, 8420247, 99423719, 87623445, -13791067291, -202300002453, -202683482821, 42194985241545, 738185254885529, 805294804942047, -216422419200618961, -4390167368672158755, -5040372451183319251
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(exp(x)-1)^2/2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 2, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(-2)^k);

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * Stirling2(k,2) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(-2)^k.

A353883 Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^2 / 4).

Original entry on oeis.org

1, 0, 0, 0, 6, 30, 105, 315, 3388, 47628, 497115, 4172025, 37829946, 491971194, 7699457857, 114432747975, 1602464966040, 23767387469688, 408590795439351, 7756561553900085, 149537297087139910, 2889288053301888630, 58297667473293537597
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^2/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (2*k)!*stirling(n-2*k, 2*k, 2)/(4^k*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (2*k)! * Stirling2(n-2*k,2*k)/(4^k * (n-2*k)!).

A330046 Expansion of e.g.f. exp(x) / (1 - sinh(x)).

Original entry on oeis.org

1, 2, 5, 17, 77, 437, 2975, 23627, 214457, 2189897, 24846395, 310095887, 4221990437, 62273111357, 989164604615, 16834483468547, 305604501324017, 5894522593612817, 120381876933435635, 2595103478745235607, 58887707028270711197, 1403084759749993342277
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Comments

Binomial transform of A006154.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x]/(1 - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A006154(k).
a(n) ~ n! * (1 + 1/sqrt(2)) / (log(1 + sqrt(2)))^(n+1). - Vaclav Kotesovec, Dec 03 2019
Showing 1-8 of 8 results.