A350280 Number of bracelets describing topological configurations of points and lines formed by the perpendicular bisectors of the sides of a convex cyclic n-gon.
0, 1, 1, 5, 9, 30, 69, 203, 519, 1466, 3933, 11025, 30345, 85190, 238063, 671651, 1895265, 5376856, 15279117, 43568435, 124478129, 356537150, 1023113061, 2941713513, 8472215013, 24439992746, 70604898953, 204253079165, 591631927785, 1715743930880, 4981202429973
Offset: 1
Keywords
Examples
For n=3, drawing the three perpendicular bisectors of a triangle divides the plane into 6 regions. Three of these regions contain one vertex of the triangle and the other three contain none. Up to cyclic shifts and reversal, the only possible configuration is (nonempty, nonempty, empty, empty, nonempty, empty), thus a(3)=1. For n=3, the only 6-tuple (up to cyclic shift and reversal) which has interlacing signature is (1,1,0,0,1,0). Its signature is (1,2,0). For n=4, the a(4)=5 equivalence classes of 8-tuples with interlacing signature are (0,1,0,1,0,1,0,1), (0,0,0,1,0,1,1,1), (0,1,0,1,0,0,1,1), (0,1,1,1,0,0,1,0) and (0,0,1,1,0,1,1,0).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- P. Melotti, S. Ramassamy and P. Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
Crossrefs
Cf. A028243.
Programs
-
PARI
\\ here c(n) is up to rotations only. c(n)={(n%2==0) + sumdiv(n, d, if(n/d%2==1, eulerphi(n/d)*((3^d - (-1)^d)/2 - 2^d)))/n} a(n)={(c(n) + if(n%2==0, 3^(n/2-1)))/2} \\ Andrew Howroyd, Dec 25 2021
-
PARI
seq(n)=Vec((x^2/(1-x^2) + x^2/(1-3*x^2))/2 + sum(k=0, (n-1)\2, my(d=2*k+1); eulerphi(d)*log((1+x^d)*(1-2*x^d)^2/(1-3*x^d) + O(x*x^n))/d)/4, -n) \\ Andrew Howroyd, Dec 25 2021
Formula
From Andrew Howroyd, Dec 25 2021: (Start)
a(n) = (b(n) + (Sum_{d|n, n/d==1 (mod 2)} phi(n/d)*((3^d - (-1)^d)/2 - 2^d))/n)/2 where b(n) = 1 + 3^(n/2-1) for even n and 0 otherwise.
G.f.: (1/2)*(x^2/(1-x^2) + x^2/(1-3*x^2)) + (1/4)*Sum_{k>=0} phi(2*k+1)*log(B(x^(2*k+1)))/(2*k+1) where B(x) = (1+x)*(1-2*x)^2/(1-3*x).
(End)
Extensions
Terms a(11) and beyond from Andrew Howroyd, Dec 25 2021
Comments