cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 79 results. Next

A000225 a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Keywords

Comments

This is the Gaussian binomial coefficient [n,1] for q=2.
Number of rank-1 matroids over S_n.
Numbers k such that the k-th central binomial coefficient is odd: A001405(k) mod 2 = 1. - Labos Elemer, Mar 12 2003
This gives the (zero-based) positions of odd terms in the following convolution sequences: A000108, A007460, A007461, A007463, A007464, A061922.
Also solutions (with minimum number of moves) for the problem of Benares Temple, i.e., three diamond needles with n discs ordered by decreasing size on the first needle to place in the same order on the third one, without ever moving more than one disc at a time and without ever placing one disc at the top of a smaller one. - Xavier Acloque, Oct 18 2003
a(0) = 0, a(1) = 1; a(n) = smallest number such that a(n)-a(m) == 0 (mod (n-m+1)), for all m. - Amarnath Murthy, Oct 23 2003
Binomial transform of [1, 1/2, 1/3, ...] = [1/1, 3/2, 7/3, ...]; (2^n - 1)/n, n=1,2,3, ... - Gary W. Adamson, Apr 28 2005
Numbers whose binary representation is 111...1. E.g., the 7th term is (2^7) - 1 = 127 = 1111111 (in base 2). - Alexandre Wajnberg, Jun 08 2005
Number of nonempty subsets of a set with n elements. - Michael Somos, Sep 03 2006
For n >= 2, a(n) is the least Fibonacci n-step number that is not a power of 2. - Rick L. Shepherd, Nov 19 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are disjoint and for which either x is a subset of y or y is a subset of x. - Ross La Haye, Jan 10 2008
A simpler way to state this is that it is the number of pairs (x,y) where at least one of x and y is the empty set. - Franklin T. Adams-Watters, Oct 28 2011
2^n-1 is the sum of the elements in a Pascal triangle of depth n. - Brian Lewis (bsl04(AT)uark.edu), Feb 26 2008
Sequence generalized: a(n) = (A^n -1)/(A-1), n >= 1, A integer >= 2. This sequence has A=2; A003462 has A=3; A002450 has A=4; A003463 has A=5; A003464 has A=6; A023000 has A=7; A023001 has A=8; A002452 has A=9; A002275 has A=10; A016123 has A=11; A016125 has A=12; A091030 has A=13; A135519 has A=14; A135518 has A=15; A131865 has A=16; A091045 has A=17; A064108 has A=20. - Ctibor O. Zizka, Mar 03 2008
a(n) is also a Mersenne prime A000668 when n is a prime number in A000043. - Omar E. Pol, Aug 31 2008
a(n) is also a Mersenne number A001348 when n is prime. - Omar E. Pol, Sep 05 2008
With offset 1, = row sums of triangle A144081; and INVERT transform of A009545 starting with offset 1; where A009545 = expansion of sin(x)*exp(x). - Gary W. Adamson, Sep 10 2008
Numbers n such that A000120(n)/A070939(n) = 1. - Ctibor O. Zizka, Oct 15 2008
For n > 0, sequence is equal to partial sums of A000079; a(n) = A000203(A000079(n-1)). - Lekraj Beedassy, May 02 2009
Starting with offset 1 = the Jacobsthal sequence, A001045, (1, 1, 3, 5, 11, 21, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Numbers n such that n=2*phi(n+1)-1. - Farideh Firoozbakht, Jul 23 2009
a(n) = (a(n-1)+1)-th odd numbers = A005408(a(n-1)) for n >= 1. - Jaroslav Krizek, Sep 11 2009
Partial sums of a(n) for n >= 0 are A000295(n+1). Partial sums of a(n) for n >= 1 are A000295(n+1) and A130103(n+1). a(n) = A006127(n) - (n+1). - Jaroslav Krizek, Oct 16 2009
If n is even a(n) mod 3 = 0. This follows from the congruences 2^(2k) - 1 ~ 2*2*...*2 - 1 ~ 4*4*...*4 - 1 ~ 1*1*...*1 - 1 ~ 0 (mod 3). (Note that 2*2*...*2 has an even number of terms.) - Washington Bomfim, Oct 31 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 26 2010
This is the sequence A(0,1;1,2;2) = A(0,1;3,-2;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) = S(n+1,2), a Stirling number of the second kind. See the example below. - Dennis P. Walsh, Mar 29 2011
Entries of row a(n) in Pascal's triangle are all odd, while entries of row a(n)-1 have alternating parities of the form odd, even, odd, even, ..., odd.
Define the bar operation as an operation on signed permutations that flips the sign of each entry. Then a(n+1) is the number of signed permutations of length 2n that are equal to the bar of their reverse-complements and avoid the set of patterns {(-2,-1), (-1,+2), (+2,+1)}. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011
A159780(a(n)) = n and A159780(m) < n for m < a(n). - Reinhard Zumkeller, Oct 21 2011
This sequence is also the number of proper subsets of a set with n elements. - Mohammad K. Azarian, Oct 27 2011
a(n) is the number k such that the number of iterations of the map k -> (3k +1)/2 == 1 (mod 2) until reaching (3k +1)/2 == 0 (mod 2) equals n. (see the Collatz problem). - Michel Lagneau, Jan 18 2012
For integers a, b, denote by a<+>b the least c >= a such that Hd(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>1. Thus this sequence is the Hamming analog of nonnegative integers. - Vladimir Shevelev, Feb 13 2012
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... apparently A007733. - R. J. Mathar, Aug 10 2012
Start with n. Each n generates a sublist {n-1,n-2,...,1}. Each element of each sublist also generates a sublist. Take the sum of all. E.g., 3->{2,1} and 2->{1}, so a(3)=3+2+1+1=7. - Jon Perry, Sep 02 2012
This is the Lucas U(P=3,Q=2) sequence. - R. J. Mathar, Oct 24 2012
The Mersenne numbers >= 7 are all Brazilian numbers, as repunits in base two. See Proposition 1 & 5.2 in Links: "Les nombres brésiliens". - Bernard Schott, Dec 26 2012
Number of line segments after n-th stage in the H tree. - Omar E. Pol, Feb 16 2013
Row sums of triangle in A162741. - Reinhard Zumkeller, Jul 16 2013
a(n) is the highest power of 2 such that 2^a(n) divides (2^n)!. - Ivan N. Ianakiev, Aug 17 2013
In computer programming, these are the only unsigned numbers such that k&(k+1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Minimal number of moves needed to interchange n frogs in the frogs problem (see for example the NRICH 1246 link or the Britton link below). - N. J. A. Sloane, Jan 04 2014
a(n) !== 4 (mod 5); a(n) !== 10 (mod 11); a(n) !== 2, 4, 5, 6 (mod 7). - Carmine Suriano, Apr 06 2014
After 0, antidiagonal sums of the array formed by partial sums of integers (1, 2, 3, 4, ...). - Luciano Ancora, Apr 24 2015
a(n+1) equals the number of ternary words of length n avoiding 01,02. - Milan Janjic, Dec 16 2015
With offset 0 and another initial 0, the n-th term of 0, 0, 1, 3, 7, 15, ... is the number of commas required in the fully-expanded von Neumann definition of the ordinal number n. For example, 4 := {0, 1, 2, 3} := {{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}}, which uses seven commas. Also, for n>0, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where a single symbol (as usual) is always used to represent the empty set and spaces are ignored. E.g., a(5) = 31, the total such symbols for the ordinal 4. - Rick L. Shepherd, May 07 2016
With the quantum integers defined by [n+1]A001045%20are%20given%20by%20q%20=%20i%20*%20sqrt(2)%20for%20i%5E2%20=%20-1.%20Cf.%20A239473.%20-%20_Tom%20Copeland">q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)), the Mersenne numbers are a(n+1) = q^n [n+1]_q with q = sqrt(2), whereas the signed Jacobsthal numbers A001045 are given by q = i * sqrt(2) for i^2 = -1. Cf. A239473. - _Tom Copeland, Sep 05 2016
For n>1: numbers n such that n - 1 divides sigma(n + 1). - Juri-Stepan Gerasimov, Oct 08 2016
This is also the second column of the Stirling2 triangle A008277 (see also A048993). - Wolfdieter Lang, Feb 21 2017
Except for the initial terms, the decimal representation of the x-axis of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", "Rule 721" and "Rule 734", based on the 5-celled von Neumann neighborhood initialized with a single on cell. - Robert Price, Mar 14 2017
a(n), n > 1, is the number of maximal subsemigroups of the monoid of order-preserving partial injective mappings on a set with n elements. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Also the number of independent vertex sets and vertex covers in the complete bipartite graph K_{n-1,n-1}. - Eric W. Weisstein, Sep 21 2017
Sum_{k=0..n} p^k is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*p + binomial(i+j-1, i), in this case p=2 (empirical observation). - Tony Foster III, May 11 2019
The rational numbers r(n) = a(n+1)/2^(n+1) = a(n+1)/A000079(n+1) appear also as root of the n-th iteration f^{[n]}(c; x) = 2^(n+1)*x - a(n+1)*c of f(c; x) = f^{[0]}(c; x) = 2*x - c as r(n)*c. This entry is motivated by a riddle of Johann Peter Hebel (1760 - 1826): Erstes Rechnungsexempel(Ein merkwürdiges Rechnungs-Exempel) from 1803, with c = 24 and n = 2, leading to the root r(2)*24 = 21 as solution. See the link and reference. For the second problem, also involving the present sequence, see a comment in A130330. - Wolfdieter Lang, Oct 28 2019
a(n) is the sum of the smallest elements of all subsets of {1,2,..,n} that contain n. For example, a(3)=7; the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 7. - Enrique Navarrete, Aug 21 2020
a(n-1) is the number of nonempty subsets of {1,2,..,n} which don't have an element that is the size of the set. For example, for n = 4, a(3) = 7 and the subsets are {2}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,2,4}. - Enrique Navarrete, Nov 21 2020
From Eric W. Weisstein, Sep 04 2021: (Start)
Also the number of dominating sets in the complete graph K_n.
Also the number of minimum dominating sets in the n-helm graph for n >= 3. (End)
Conjecture: except for a(2)=3, numbers m such that 2^(m+1) - 2^j - 2^k - 1 is composite for all 0 <= j < k <= m. - Chai Wah Wu, Sep 08 2021
a(n) is the number of three-in-a-rows passing through a corner cell in n-dimensional tic-tac-toe. - Ben Orlin, Mar 15 2022
From Vladimir Pletser, Jan 27 2023: (Start)
a(n) == 1 (mod 30) for n == 1 (mod 4);
a(n) == 7 (mod 120) for n == 3 (mod 4);
(a(n) - 1)/30 = (a(n+2) - 7)/120 for n odd;
(a(n) - 1)/30 = (a(n+2) - 7)/120 = A131865(m) for n == 1 (mod 4) and m >= 0 with A131865(0) = 0. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 8. - Stefano Spezia, Nov 15 2023
Also, number of nodes in a perfect binary tree of height n-1, or: number of squares (or triangles) after the n-th step of the construction of a Pythagorean tree: Start with a segment. At each step, construct squares having the most recent segment(s) as base, and isosceles right triangles having the opposite side of the squares as hypotenuse ("on top" of each square). The legs of these triangles will serve as the segments which are the bases of the squares in the next step. - M. F. Hasler, Mar 11 2024
a(n) is the length of the longest path in the n-dimensional hypercube. - Christian Barrientos, Apr 13 2024
a(n) is the diameter of the n-Hanoi graph. Equivalently, a(n) is the largest minimum number of moves between any two states of the Towers of Hanoi problem (aka problem of Benares Temple described above). - Allan Bickle, Aug 09 2024

Examples

			For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely,
  {a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - _Dennis P. Walsh_, Mar 29 2011
From _Justin M. Troyka_, Aug 13 2011: (Start)
Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are:
  (+1,+2,-3,-4),
  (+1,+3,-2,-4),
  (+1,-3,+2,-4),
  (+2,+4,-1,-3),
  (+3,+4,-1,-2),
  (-3,+1,-4,+2),
  (-3,-4,+1,+2). (End)
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ...
For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3.
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12  - _Allan Bickle_, Aug 07 2024
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 75-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.

Crossrefs

Cf. A000043 (Mersenne exponents).
Cf. A000668 (Mersenne primes).
Cf. A001348 (Mersenne numbers with n prime).
Cf. a(n)=A112492(n, 2). Rightmost column of A008969.
a(n) = A118654(n, 1) = A118654(n-1, 3), for n > 0.
Subsequence of A132781.
Smallest number whose base b sum of digits is n: this sequence (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).
Cf. A008277, A048993 (columns k=2), A000918, A130330.
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

  • Haskell
    a000225 = (subtract 1) . (2 ^)
    a000225_list = iterate ((+ 1) . (* 2)) 0
    -- Reinhard Zumkeller, Mar 20 2012
    
  • Maple
    A000225 := n->2^n-1; [ seq(2^n-1,n=0..50) ];
    A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
  • Mathematica
    a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *)
    Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *)
    2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *)
    LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    A000225(n) = 2^n-1  \\ Michael B. Porter, Oct 27 2009
    
  • PARI
    concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
    
  • Python
    def A000225(n): return (1<Chai Wah Wu, Jul 06 2022
  • SageMath
    def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
    

Formula

G.f.: x/((1-2*x)*(1-x)).
E.g.f.: exp(2*x) - exp(x).
E.g.f. if offset 1: ((exp(x)-1)^2)/2.
a(n) = Sum_{k=0..n-1} 2^k. - Paul Barry, May 26 2003
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=0, a(1)=1. - Paul Barry, Jun 06 2003
Let b(n) = (-1)^(n-1)*a(n). Then b(n) = Sum_{i=1..n} i!*i*Stirling2(n,i)*(-1)^(i-1). E.g.f. of b(n): (exp(x)-1)/exp(2x). - Mario Catalani (mario.catalani(AT)unito.it), Dec 19 2003
a(n+1) = 2*a(n) + 1, a(0) = 0.
a(n) = Sum_{k=1..n} binomial(n, k).
a(n) = n + Sum_{i=0..n-1} a(i); a(0) = 0. - Rick L. Shepherd, Aug 04 2004
a(n+1) = (n+1)*Sum_{k=0..n} binomial(n, k)/(k+1). - Paul Barry, Aug 06 2004
a(n+1) = Sum_{k=0..n} binomial(n+1, k+1). - Paul Barry, Aug 23 2004
Inverse binomial transform of A001047. Also U sequence of Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A099393(n-1) - A020522(n-1) for n > 0. - Reinhard Zumkeller, Feb 07 2006
a(n) = A119258(n,n-1) for n > 0. - Reinhard Zumkeller, May 11 2006
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
Sum_{n>0} 1/a(n) = 1.606695152... = A065442, see A038631. - Philippe Deléham, Jun 27 2006
Stirling_2(n-k,2) starting from n=k+1. - Artur Jasinski, Nov 18 2006
a(n) = A125118(n,1) for n > 0. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1,2). - Ross La Haye, Jan 10 2008
a(n) = A024036(n)/A000051(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A024088(n)/A001576(n). -Reinhard Zumkeller, Feb 15 2009
a(2*n) = a(n)*A000051(n); a(n) = A173787(n,0). - Reinhard Zumkeller, Feb 28 2010
For n > 0: A179857(a(n)) = A024036(n) and A179857(m) < A024036(n) for m < a(n). - Reinhard Zumkeller, Jul 31 2010
From Enrique Pérez Herrero, Aug 21 2010: (Start)
a(n) = J_n(2), where J_n is the n-th Jordan Totient function: (A007434, is J_2).
a(n) = Sum_{d|2} d^n*mu(2/d). (End)
A036987(a(n)) = 1. - Reinhard Zumkeller, Mar 06 2012
a(n+1) = A044432(n) + A182028(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = A007283(n)/3 - 1. - Martin Ettl, Nov 11 2012
a(n+1) = A001317(n) + A219843(n); A219843(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2012
a(n) = det(|s(i+2,j+1)|, 1 <= i,j <= n-1), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: Q(0), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 - 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
E.g.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/Q(k+1))); (continued fraction).
G.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(n) = A000203(2^(n-1)), n >= 1. - Ivan N. Ianakiev, Aug 17 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n=n} n*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n)/(t_1+t_2 +...+t_n). - Mircea Merca, Dec 06 2013
a(0) = 0; a(n) = a(n-1) + 2^(n-1) for n >= 1. - Fred Daniel Kline, Feb 09 2014
a(n) = A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 07 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Binomial transform of A057427.
Sum_{n>=0} a(n)/n! = A090142. (End)
a(n) = A000918(n) + 1. - Miquel Cerda, Aug 09 2016
a(n+1) = (A095151(n+1) - A125128(n))/2. - Miquel Cerda, Aug 12 2016
a(n) = (A079583(n) - A000325(n+1))/2. - Miquel Cerda, Aug 15 2016
Convolution of binomial coefficient C(n,a(k)) with itself is C(n,a(k+1)) for all k >= 3. - Anton Zakharov, Sep 05 2016
a(n) = (A083706(n-1) + A000325(n))/2. - Miquel Cerda, Sep 30 2016
a(n) = A005803(n) + A005408(n-1). - Miquel Cerda, Nov 25 2016
a(n) = A279396(n+2,2). - Wolfdieter Lang, Jan 10 2017
a(n) = n + Sum_{j=1..n-1} (n-j)*2^(j-1). See a Jun 14 2017 formula for A000918(n+1) with an interpretation. - Wolfdieter Lang, Jun 14 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n+m) = a(n)*a(m) + a(n) + a(m). - Yuchun Ji, Jul 27 2018
a(n+m) = a(n+1)*a(m) - 2*a(n)*a(m-1). - Taras Goy, Dec 23 2018
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*2 + binomial(i+j-1, i) (empirical observation). - Tony Foster III, May 11 2019
From Peter Bala, Jun 27 2025: (Start)
For n >= 1, a(3*n)/a(n) = A001576(n), a(4*n)/a(n) = A034496(n), a(5*n)/a(n) = A020514(n) a(6*n)/a(n) = A034665(n), a(7*n)/a(n) = A020516(n) and a(8*n)/a(n) = A034674(n).
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A006095 (k = 3), A006096 (k = 4), A006097 (k = 5), A006110 (k = 6), A022189 (k = 7), A022190 (k = 8), A022191 (k = 9) and A022192 (k = 10).
The following are all examples of telescoping series:
Sum_{n >= 1} 2^n/(a(n)*a(n+1)) = 1; Sum_{n >= 1} 2^n/(a(n)*a(n+1)*a(n+2)) = 1/9.
In general, for k >= 1, Sum_{n >= 1} 2^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 2^n/(a(n)*a(n+2)) = 4/9, since 2^n/(a(n)*a(n+2)) = b(n) - b(n+1), where b(n) = (2/3)*(3*2^(n-1) - 1)/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+2)) = -2/9, since (-2)^n/(a(n)*a(n+2)) = c(n) - c(n+1), where c(n) = (1/3)*(-2)^n/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} 2^n/(a(n)*a(n+4)) = 18/175, since 2^n/(a(n)*a(n+4)) = d(n) - d(n+1), where d(n) = (120*8^n - 140*4^n + 45*2^n - 4)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+4)) = -26/525, since (-2)^n/(a(n)*a(n+4)) = e(n) - e(n+1), where e(n) = (-1)^n*(40*8^n - 24*4^n + 5*2^n)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)). (End)

Extensions

Name partially edited by Eric W. Weisstein, Sep 04 2021

A139250 Toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 35, 43, 47, 55, 67, 79, 95, 123, 155, 171, 175, 183, 195, 207, 223, 251, 283, 303, 319, 347, 383, 423, 483, 571, 651, 683, 687, 695, 707, 719, 735, 763, 795, 815, 831, 859, 895, 935, 995, 1083, 1163, 1199, 1215, 1243, 1279, 1319, 1379
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

A toothpick is a copy of the closed interval [-1,1]. (In the paper, we take it to be a copy of the unit interval [-1/2, 1/2].)
We start at stage 0 with no toothpicks.
At stage 1 we place a toothpick in the vertical direction, anywhere in the plane.
In general, given a configuration of toothpicks in the plane, at the next stage we add as many toothpicks as possible, subject to certain conditions:
- Each new toothpick must lie in the horizontal or vertical directions.
- Two toothpicks may never cross.
- Each new toothpick must have its midpoint touching the endpoint of exactly one existing toothpick.
The sequence gives the number of toothpicks after n stages. A139251 (the first differences) gives the number added at the n-th stage.
Call the endpoint of a toothpick "exposed" if it does not touch any other toothpick. The growth rule may be expressed as follows: at each stage, new toothpicks are placed so their midpoints touch every exposed endpoint.
This is equivalent to a two-dimensional cellular automaton. The animations show the fractal-like behavior.
After 2^k - 1 steps, there are 2^k exposed endpoints, all located on two lines perpendicular to the initial toothpick. At the next step, 2^k toothpicks are placed on these lines, leaving only 4 exposed endpoints, located at the corners of a square with side length 2^(k-1) times the length of a toothpick. - M. F. Hasler, Apr 14 2009 and others. For proof, see the Applegate-Pol-Sloane paper.
If the third condition in the definition is changed to "- Each new toothpick must have at exactly one of its endpoints touching the midpoint of an existing toothpick" then the same sequence is obtained. The configurations of toothpicks are of course different from those in the present sequence. But if we start with the configurations of the present sequence, rotate each toothpick a quarter-turn, and then rotate the whole configuration a quarter-turn, we obtain the other configuration.
If the third condition in the definition is changed to "- Each new toothpick must have at least one of its endpoints touching the midpoint of an existing toothpick" then the sequence n^2 - n + 1 is obtained, because there are no holes left in the grid.
A "toothpick" of length 2 can be regarded as a polyedge with 2 components, both on the same line. At stage n, the toothpick structure is a polyedge with 2*a(n) components.
Conjecture: Consider the rectangles in the sieve (including the squares). The area of each rectangle (A = b*c) and the edges (b and c) are powers of 2, but at least one of the edges (b or c) is <= 2.
In the toothpick structure, if n >> 1, we can see some patterns that look like "canals" and "diffraction patterns". For example, see the Applegate link "A139250: the movie version", then enter n=1008 and click "Update". See also "T-square (fractal)" in the Links section. - Omar E. Pol, May 19 2009, Oct 01 2011
From Benoit Jubin, May 20 2009: The web page "Gallery" of Chris Moore (see link) has some nice pictures that are somewhat similar to the pictures of the present sequence. What sequences do they correspond to?
For a connection to Sierpiński triangle and Gould's sequence A001316, see the leftist toothpick triangle A151566.
Eric Rowland comments on Mar 15 2010 that this toothpick structure can be represented as a 5-state CA on the square grid. On Mar 18 2010, David Applegate showed that three states are enough. See links.
Equals row sums of triangle A160570 starting with offset 1; equivalent to convolving A160552: (1, 1, 3, 1, 3, 5, 7, ...) with (1, 2, 2, 2, ...). Equals A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...) convolved with 2*n - 1: (1, 3, 5, 7, ...). Starting with offset 1 equals A151548: [1, 3, 5, 7, 5, 11, 17, 15, ...] convolved with A078008 signed (A151575): [1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...]. - Gary W. Adamson, May 19 2009, May 25 2009
For a three-dimensional version of the toothpick structure, see A160160. - Omar E. Pol, Dec 06 2009
From Omar E. Pol, May 20 2010: (Start)
Observation about the arrangement of rectangles:
It appears there is a nice pattern formed by distinct modular substructures: a central cross surrounded by asymmetrical crosses (or "hidden crosses") of distinct sizes and also by "nuclei" of crosses.
Conjectures: after 2^k stages, for k >= 2, and for m = 1 to k - 1, there are 4^(m-1) substructures of size s = k - m, where every substructure has 4*s rectangles. The total number of substructures is equal to (4^(k-1)-1)/3 = A002450(k-1). For example: If k = 5 (after 32 stages) we can see that:
a) There is a central cross, of size 4, with 16 rectangles.
b) There are four hidden crosses, of size 3, where every cross has 12 rectangles.
c) There are 16 hidden crosses, of size 2, where every cross has 8 rectangles.
d) There are 64 nuclei of crosses, of size 1, where every nucleus has 4 rectangles.
Hence the total number of substructures after 32 stages is equal to 85. Note that in every arm of every substructure, in the potential growth direction, the length of the rectangles are the powers of 2. (See illustrations in the links. See also A160124.) (End)
It appears that the number of grid points that are covered after n-th stage of the toothpick structure, assuming the toothpicks have length 2*k, is equal to (2*k-2)*a(n) + A147614(n), k > 0. See the formulas of A160420 and A160422. - Omar E. Pol, Nov 13 2010
Version "Gullwing": on the semi-infinite square grid, at stage 1, we place a horizontal "gull" with its vertices at [(-1, 2), (0, 1), (1, 2)]. At stage 2, we place two vertical gulls. At stage 3, we place four horizontal gulls. a(n) is also the number of gulls after n-th stage. For more information about the growth of gulls see A187220. - Omar E. Pol, Mar 10 2011
From Omar E. Pol, Mar 12 2011: (Start)
Version "I-toothpick": we define an "I-toothpick" to consist of two connected toothpicks, as a bar of length 2. An I-toothpick with length 2 is formed by two toothpicks with length 1. The midpoint of an I-toothpick is touched by its two toothpicks. a(n) is also the number of I-toothpicks after n-th stage in the I-toothpick structure. The I-toothpick structure is essentially the original toothpick structure in which every toothpick is replaced by an I-toothpick. Note that in the physical model of the original toothpick structure the midpoint of a wooden toothpick of the new generation is superimposed on the endpoint of a wooden toothpick of the old generation. However, in the physical model of the I-toothpick structure the wooden toothpicks are not overlapping because all wooden toothpicks are connected by their endpoints. For the number of toothpicks in the I-toothpick structure see A160164 which also gives the number of gullwing in a gullwing structure because the gullwing structure of A160164 is equivalent to the I-toothpick structure. It also appears that the gullwing sequence A187220 is a supersequence of the original toothpick sequence A139250 (this sequence).
For the connection with the Ulam-Warburton cellular automaton see the Applegate-Pol-Sloane paper and see also A160164 and A187220.
(End)
A version in which the toothpicks are connected by their endpoints: on the semi-infinite square grid, at stage 1, we place a vertical toothpick of length 1 from (0, 0). At stage 2, we place two horizontal toothpicks from (0,1), and so on. The arrangement looks like half of the I-toothpick structure. a(n) is also the number of toothpicks after the n-th. - Omar E. Pol, Mar 13 2011
Version "Quarter-circle" (or Q-toothpick): a(n) is also the number of Q-toothpicks after the n-th stage in a Q-toothpick structure in the first quadrant. We start from (0,1) with the first Q-toothpick centered at (1, 1). The structure is asymmetric. For a similar structure but starting from (0, 0) see A187212. See A187210 and A187220 for more information. - Omar E. Pol, Mar 22 2011
Version "Tree": It appears that a(n) is also the number of toothpicks after the n-th stage in a toothpick structure constructed following a special rule: the toothpicks of the new generation have length 4 when they are placed on the infinite square grid (note that every toothpick has four components of length 1), but after every stage, one (or two) of the four components of every toothpick of the new generation is removed, if such component contains an endpoint of the toothpick and if such endpoint is touching the midpoint or the endpoint of another toothpick. The truncated endpoints of the toothpicks remain exposed forever. Note that there are three sizes of toothpicks in the structure: toothpicks of lengths 4, 3 and 2. A159795 gives the total number of components in the structure after the n-th stage. A153006 (the corner sequence of the original version) gives 1/4 of the total of components in the structure after the n-th stage. - Omar E. Pol, Oct 24 2011
From Omar E. Pol, Sep 16 2012: (Start)
It appears that a(n)/A147614(n) converges to 3/4.
It appears that a(n)/A160124(n) converges to 3/2.
It appears that a(n)/A139252(n) converges to 3.
Also:
It appears that A147614(n)/A160124(n) converges to 2.
It appears that A160124(n)/A139252(n) converges to 2.
It appears that A147614(n)/A139252(n) converges to 4.
(End)
It appears that a(n) is also the total number of ON cells after n-th stage in a quadrant of the structure of the cellular automaton described in A169707 plus the total number of ON cells after n+1 stages in a quadrant of the mentioned structure, without its central cell. See the illustration of the NW-NE-SE-SW version in A169707. See also the connection between A160164 and A169707. - Omar E. Pol, Jul 26 2015
On the infinite Cairo pentagonal tiling consider the symmetric figure formed by two non-adjacent pentagons connected by a line segment joining two trivalent nodes. At stage 1 we start with one of these figures turned ON. The rule for the next stages is that the concave part of the figures of the new generation must be adjacent to the complementary convex part of the figures of the old generation. a(n) gives the number of figures that are ON in the structure after n-th stage. A160164(n) gives the number of ON cells in the structure after n-th stage. - Omar E. Pol, Mar 29 2018
From Omar E. Pol, Mar 06 2019: (Start)
The "word" of this sequence is "ab". For further information about the word of cellular automata see A296612.
Version "triangular grid": a(n) is also the total number of toothpicks of length 2 after n-th stage in the toothpick structure on the infinite triangular grid, if we use only two of the three axes. Otherwise, if we use the three axes, so we have the sequence A296510 which has word "abc".
The normal toothpick structure can be considered a superstructure of the Ulam-Warburton celular automaton since A147562(n) equals here the total number of "hidden crosses" after 4*n stages, including the central cross (beginning to count the crosses when their "nuclei" are totally formed with 4 quadrilaterals). Note that every quadrilateral in the structure belongs to a "hidden cross".
Also, the number of "hidden crosses" after n stages equals the total number of "flowers with six petals" after n-th stage in the structure of A323650, which appears to be a "missing link" between this sequence and A147562.
Note that the location of the "nuclei of the hidden crosses" is very similar (essentially the same) to the location of the "flowers with six petals" in the structure of A323650 and to the location of the "ON" cells in the version "one-step bishop" of the Ulam-Warburton cellular automaton of A147562. (End)
From Omar E. Pol, Nov 27 2020: (Start)
The simplest substructures are the arms of the hidden crosses. Each closed region (square or rectangle) of the structure belongs to one of these arms. The narrow arms have regions of area 1, 2, 4, 8, ... The broad arms have regions of area 2, 4, 8, 16 , ... Note that after 2^k stages, with k >= 3, the narrow arms of the main hidden crosses in each quadrant frame the size of the toothpick structure after 2^(k-1) stages.
Another kind of substructure could be called "bar chart" or "bar graph". This substructure is formed by the rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure after 2^k stages, with k >= 2. The height of these successive regions gives the first 2^(k-1) - 1 terms from A006519. For example: if k = 5 the respective heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1]. The area of these successive regions gives the first 2^(k-1) - 1 terms of A171977. For example: if k = 5 the respective areas are [2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2].
For a connection to Mersenne primes (A000668) and perfect numbers (A000396) see A153006.
For a representation of the Wagstaff primes (A000979) using the toothpick structure see A194810.
For a connection to stained glass windows and a hidden curve see A336532. (End)
It appears that the graph of a(n) bears a striking resemblance to the cumulative distribution function F(x) for X the random variable taking values in [0,1], where the binary expansion of X is given by a sequence of independent coin tosses with probability 3/4 of being 1 at each bit. It appears that F(n/2^k)*(2^(2k+1)+1)/3 approaches a(n) for k large. - James Coe, Jan 10 2022

Examples

			a(10^10) = 52010594272060810683. - _David A. Corneth_, Mar 26 2015
		

References

  • D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
  • L. D. Pryor, The Inheritance of Inflorescence Characters in Eucalyptus, Proceedings of the Linnean Society of New South Wales, V. 79, (1954), p. 81, 83.
  • Richard P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 95, figure 1.28, Cambridge University Press (2012), p. 120, 166.

Crossrefs

Programs

  • Maple
    G := (x/((1-x)*(1+2*x))) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # From N. J. A. Sloane, Dec 25 2009: A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
  • Mathematica
    CoefficientList[ Series[ (x/((1 - x)*(1 + 2x))) (1 + 2x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] (* Robert G. Wilson v, Dec 06 2010 *)
    a[0] = 0; a[n_] := a[n] = Module[{m, k}, m = 2^(Length[IntegerDigits[n, 2]] - 1); k = (2m^2+1)/3; If[n == m, k, k + 2 a[n - m] + a[n - m + 1] - 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 06 2018, after David A. Corneth *)
  • PARI
    A139250(n,print_all=0)={my(p=[], /* set of "used" points. Points are written as complex numbers, c=x+iy. Toothpicks are of length 2 */
    ee=[[0,1]], /* list of (exposed) endpoints. Exposed endpoints are listed as [c,d] where c=x+iy is the position of the endpoint, and d (unimodular) is the direction */
    c,d,ne, cnt=1); print_all && print1("0,1"); n<2 && return(n);
    for(i=2,n, p=setunion(p, Set(Mat(ee~)[,1])); /* add endpoints (discard directions) from last move to "used" points */
    ne=[]; /* new (exposed) endpoints */
    for( k=1, #ee, /* add endpoints of new toothpicks if not among the used points */
    setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne,Set([[c,d]]));
    setsearch(p, c-2*d) || ne=setunion(ne,Set([[c-2*d,-d]]));
    ); /* using Set() we have the points sorted, so it's easy to remove those which finally are not exposed because they touch a new toothpick */
    forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] && k-- && ee=vecextract(ee,Str("^"k"..",k+1)));
    cnt+=#ee; /* each exposed endpoint will give a new toothpick */
    print_all && print1(","cnt));cnt} \\ M. F. Hasler, Apr 14 2009
    
  • PARI
    \\works for n > 0
    a(n) = {my(k = (2*msb(n)^2 + 1) / 3); if(n==msb(n),k , k + 2*a(n-msb(n)) + a(n - msb(n) + 1) - 1)}
    msb(n)=my(t=0);while(n>>t>0,t++);2^(t-1)\\ David A. Corneth, Mar 26 2015
    
  • Python
    def msb(n):
        t = 0
        while n>>t > 0:
            t += 1
        return 2**(t - 1)
    def a(n):
        k = (2 * msb(n)**2 + 1) / 3
        return 0 if n == 0 else k if n == msb(n) else k + 2*a(n - msb(n)) + a(n - msb(n) + 1) - 1
    [a(n) for n in range(101)]  # Indranil Ghosh, Jul 01 2017, after David A. Corneth's PARI script

Formula

a(2^k) = A007583(k), if k >= 0.
a(2^k-1) = A006095(k+1), if k >= 1.
a(A000225(k)) - a((A000225(k)-1)/2) = A006516(k), if k >= 1.
a(A000668(k)) - a((A000668(k)-1)/2) = A000396(k), if k >= 1.
G.f.: (x/((1-x)*(1+2*x))) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
One can show that lim sup a(n)/n^2 = 2/3, and it appears that lim inf a(n)/n^2 is 0.451... - Benoit Jubin, Apr 15 2009 and Jan 29 2010, N. J. A. Sloane, Jan 29 2010
Observation: a(n) == 3 (mod 4) for n >= 2. - Jaume Oliver Lafont, Feb 05 2009
a(2^k-1) = A000969(2^k-2), if k >= 1. - Omar E. Pol, Feb 13 2010
It appears that a(n) = (A187220(n+1) - 1)/2. - Omar E. Pol, Mar 08 2011
a(n) = 4*A153000(n-2) + 3, if n >= 2. - Omar E. Pol, Oct 01 2011
It appears that a(n) = A160552(n) + (A169707(n) - 1)/2, n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = A255747(n) + A255747(n-1), n >= 1. - Omar E. Pol, Mar 16 2015
Let n = msb(n) + j where msb(n) = A053644(n) and let a(0) = 0. Then a(n) = (2 * msb(n)^2 + 1)/3 + 2 * a(j) + a(j+1) - 1. - David A. Corneth, Mar 26 2015
It appears that a(n) = (A169707(n) - 1)/4 + (A169707(n+1) - 1)/4, n >= 1. - Omar E. Pol, Jul 24 2015

Extensions

Verified and extended, a(49)-a(53), using the given PARI code by M. F. Hasler, Apr 14 2009
Further edited by N. J. A. Sloane, Jan 28 2010

A003462 a(n) = (3^n - 1)/2.

Original entry on oeis.org

0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 1743392200, 5230176601, 15690529804, 47071589413, 141214768240, 423644304721, 1270932914164
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A000244. Values of base 3 strings of 1's.
a(n) = (3^n-1)/2 is also the number of different nonparallel lines determined by pair of vertices in the n dimensional hypercube. Example: when n = 2 the square has 4 vertices and then the relevant lines are: x = 0, y = 0, x = 1, y = 1, y = x, y = 1-x and when we identify parallel lines only 4 remain: x = 0, y = 0, y = x, y = 1 - x so a(2) = 4. - Noam Katz (noamkj(AT)hotmail.com), Feb 11 2001
Also number of 3-block bicoverings of an n-set (if offset is 1, cf. A059443). - Vladeta Jovovic, Feb 14 2001
3^a(n) is the highest power of 3 dividing (3^n)!. - Benoit Cloitre, Feb 04 2002
Apart from the a(0) and a(1) terms, maximum number of coins among which a lighter or heavier counterfeit coin can be identified (but not necessarily labeled as heavier or lighter) by n weighings. - Tom Verhoeff, Jun 22 2002, updated Mar 23 2017
n such that A001764(n) is not divisible by 3. - Benoit Cloitre, Jan 14 2003
Consider the mapping f(a/b) = (a + 2b)/(2a + b). Taking a = 1, b = 2 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. Sequence contains the numerators = (3^n-1)/2. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Binomial transform of A000079 (with leading zero). - Paul Barry, Apr 11 2003
With leading zero, inverse binomial transform of A006095. - Paul Barry, Aug 19 2003
Number of walks of length 2*n + 2 in the path graph P_5 from one end to the other one. Example: a(2) = 4 because in the path ABCDE we have ABABCDE, ABCBCDE, ABCDCDE and ABCDEDE. - Emeric Deutsch, Apr 02 2004
The number of triangles of all sizes (not counting holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves (leereeves(AT)fastmail.fm), May 10 2004
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n + 1, s(0) = 1, s(2n+1) = 4. - Herbert Kociemba, Jun 10 2004
Number of non-degenerate right-angled incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes of shape 4k + 1. - Alex Fink and R. K. Guy, Aug 18 2005
Also numerator of the sum of the reciprocals of the first n powers of 3, with A000244 being the sequence of denominators. With the exception of n < 2, the base 10 digital root of a(n) is always 4. In base 3 the digital root of a(n) is the same as the digital root of n. - Alonso del Arte, Jan 24 2006
The sequence 3*a(n), n >= 1, gives the number of edges of the Hanoi graph H_3^{n} with 3 pegs and n >= 1 discs. - Daniele Parisse, Jul 28 2006
Numbers n such that a(n) is prime are listed in A028491 = {3, 7, 13, 71, 103, 541, 1091, ...}. 2^(m+1) divides a(2^m*k) for m > 0. 5 divides a(4k). 5^2 divides a(20k). 7 divides a(6k). 7^2 divides a(42k). 11^2 divides a(5k). 13 divides a(3k). 17 divides a(16k). 19 divides a(18k). 1093 divides a(7k). 41 divides a(8k). p divides a((p-1)/5) for prime p = {41, 431, 491, 661, 761, 1021, 1051, 1091, 1171, ...}. p divides a((p-1)/4) for prime p = {13, 109, 181, 193, 229, 277, 313, 421, 433, 541, ...}. p divides a((p-1)/3) for prime p = {61, 67, 73, 103, 151, 193, 271, 307, 367, ...} = A014753, 3 and -3 are both cubes (one implies other) mod these primes p = 1 mod 6. p divides a((p-1)/2) for prime p = {11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, ...} = A097933(n). p divides a(p-1) for prime p > 7. p^2 divides a(p*(p-1)k) for all prime p except p = 3. p^3 divides a(p*(p-1)*(p-2)k) for prime p = 11. - Alexander Adamchuk, Jan 22 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of [unordered] pairs of elements {x,y} of P(A) for which x and y are disjoint [and both nonempty]. Wieder calls these "disjoint usual 2-combinations". - Ross La Haye, Jan 10 2008 [This is because each of the elements of {1, 2, ..., n} can be in the first subset, in the second or in neither. Because there are three options for each, the total number of options is 3^n. However, since the sets being empty is not an option we subtract 1 and since the subsets are unordered we then divide by 2! (The number of ways two objects can be arranged.) Thus we obtain (3^n-1)/2 = a(n). - Chayim Lowen, Mar 03 2015]
Also, still with P(A) being the power set of a n-element set A, a(n) is the number of 2-element subsets {x,y} of P(A) such that the union of x and y is equal to A. Cf. A341590. - Fabio Visonà, Feb 20 2021
Starting with offset 1 = binomial transform of A003945: (1, 3, 6, 12, 24, ...) and double bt of (1, 2, 1, 2, 1, 2, ...); equals polcoeff inverse of (1, -4, 3, 0, 0, 0, ...). - Gary W. Adamson, May 28 2009
Also the constant of the polynomials C(x) = 3x + 1 that form a sequence by performing this operation repeatedly and taking the result at each step as the input at the next. - Nishant Shukla (n.shukla722(AT)gmail.com), Jul 11 2009
It appears that this is A120444(3^n-1) = A004125(3^n) - A004125(3^n-1), where A004125 is the sum of remainders of n mod k for k = 1, 2, 3, ..., n. - John W. Layman, Jul 29 2009
Subsequence of A134025; A171960(a(n)) = a(n). - Reinhard Zumkeller, Jan 20 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i, i] := 3, (i > 1), A[i, i-1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 2, 3; 2) = A(0, 1; 4, -3; 0) of the family of sequences [a, b:c, d:k] considered by Gary Detlefs, and treated as A(a, b; c, d; k) in the Wolfdieter Lang link given below. - Wolfdieter Lang, Oct 18 2010
It appears that if s(n) is a first order rational sequence of the form s(0) = 0, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 0, then s(n)= a(n)/(a(n)+1). - Gary Detlefs, Nov 16 2010
This sequence also describes the total number of moves to solve the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Towers of Hanoi puzzle (cf. A183111 - A183125).
From Adi Dani, Jun 08 2011: (Start)
a(n) is number of compositions of odd numbers into n parts less than 3. For example, a(3) = 13 and there are 13 compositions odd numbers into 3 parts < 3:
1: (0, 0, 1), (0, 1, 0), (1, 0, 0);
3: (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1);
5: (1, 2, 2), (2, 1, 2), (2, 2, 1).
(End)
Pisano period lengths: 1, 2, 1, 2, 4, 2, 6, 4, 1, 4, 5, 2, 3, 6, 4, 8, 16, 2, 18, 4, ... . - R. J. Mathar, Aug 10 2012
a(n) is the total number of holes (triangles removed) after the n-th step of a Sierpiński triangle production. - Ivan N. Ianakiev, Oct 29 2013
a(n) solves Sum_{j = a(n) + 1 .. a(n+1)} j = k^2 for some integer k, given a(0) = 0 and requiring smallest a(n+1) > a(n). Corresponding k = 3^n. - Richard R. Forberg, Mar 11 2015
a(n+1) equals the number of words of length n over {0, 1, 2, 3} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015
For n >= 1, a(n) is also the total number of words of length n, over an alphabet of three letters, such that one of the letters appears an odd number of times (See A006516 for 4 letter words, and the Balakrishnan reference there). - Wolfdieter Lang, Jul 16 2017
Also, the number of maximal cliques, maximum cliques, and cliques of size 4 in the n-Apollonian network. - Andrew Howroyd, Sep 02 2017
For n > 1, the number of triangles (cliques of size 3) in the (n-1)-Apollonian network. - Andrew Howroyd, Sep 02 2017
a(n) is the largest number that can be represented with n trits in balanced ternary. Correspondingly, -a(n) is the smallest number that can be represented with n trits in balanced ternary. - Thomas König, Apr 26 2020
These form Sierpinski nesting-stars, which alternate pattern on 3^n+1/2 star numbers A003154, based on the square configurations of 9^n. The partial sums of 3^n are delineated according to the geometry of a hexagram, see illustrations in links. (3*a(n-1) + 1) create Sierpinski-anti-triangles, representing the number of holes in a (n+1) Sierpinski triangle (see illustrations). - John Elias, Oct 18 2021
For n > 1, a(n) is the number of iterations necessary to calculate the hyperbolic functions with CORDIC. - Mathias Zechmeister, Jul 26 2022
a(n) is the least number k such that A065363(k) = n. - Amiram Eldar, Sep 03 2022
For all n >= 0, Sum_{k=a(n)+1..a(n+1)} 1/k < Sum_{j=a(n+1)+1..a(n+2)} 1/j. These are the minimal points which partition the infinite harmonic series into a monotonically increasing sequence. Each partition approximates log(3) from below as n tends to infinity. - Joseph Wheat, Apr 15 2023
a(n) is also the number of 3-cycles in the n-Dorogovtsev-Goltsev-Mendes graph (using the convention the 0-Dorogovtsev-Goltsev-Mendes graph is P_2). - Eric W. Weisstein, Dec 06 2023

Examples

			There are 4 3-block bicoverings of a 3-set: {{1, 2, 3}, {1, 2}, {3}}, {{1, 2, 3}, {1, 3}, {2}}, {{1, 2, 3}, {1}, {2, 3}} and {{1, 2}, {1, 3}, {2, 3}}.
Ternary........Decimal
0.................0
1.................1
11................4
111..............13
1111.............40 etc. - _Zerinvary Lajos_, Jan 14 2007
There are altogether a(3) = 13 three letter words over {A,B,C} with say, A, appearing an odd number of times: AAA; ABC, ACB, ABB, ACC; BAC, CAB, BAB, CAC; BCA, CBA, BBA, CCA. - _Wolfdieter Lang_, Jul 16 2017
		

References

  • J. G. Mauldon, Strong solutions for the counterfeit coin problem, IBM Research Report RC 7476 (#31437) 9/15/78, IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598.
  • Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence a(n).
  • Robert Sedgewick, Algorithms, 1992, pp. 109.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences used for Shell sort: A033622, A003462, A036562, A036564, A036569, A055875.
Cf. A179526 (repeats), A113047 (characteristic function).
Cf. A000225, A000392, A004125, A014753, A028491 (indices of primes), A059443 (column k = 3), A065363, A097933, A120444, A321872 (sum reciprocals).
Cf. A064099 (minimal number of weightings to detect lighter or heavier coin among n coins).
Cf. A039755 (column k = 1).
Cf. A006516 (binomial transform, and special 4 letter words).
Cf. A341590.
Cf. A003462(n) (3-cycles), A367967(n) (5-cycles), A367968(n) (6-cycles).

Programs

Formula

G.f.: x/((1-x)*(1-3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), n > 1. a(0) = 0, a(1) = 1.
a(n) = 3*a(n-1) + 1, a(0) = 0.
E.g.f.: (exp(3*x) - exp(x))/2. - Paul Barry, Apr 11 2003
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*2^k. - Paul Barry, Aug 20 2004
a(n) = Sum_{i = 0..n-1} 3^i, for n > 0; a(0) = 0.
a(n) = A125118(n, 2) for n > 1. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1, 3) + StirlingS2(n+1, 2). - Ross La Haye, Jan 10 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A106233(k). - Philippe Deléham, Oct 30 2008
a(n) = 2*a(n-1) + 3*a(n-2) + 2, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3), a(0) = 0, a(1) = 1, a(2) = 4. Observation by G. Detlefs. See the W. Lang comment and link. - Wolfdieter Lang, Oct 18 2010
A008344(a(n)) = 0, for n > 1. - Reinhard Zumkeller, May 09 2012
A085059(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Jan 31 2013
G.f.: Q(0)/2 where Q(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 - 1/(3*9^k - 27*x*81^k/(9*x*9^k - 1/Q(k+1)))))); (continued fraction ). - Sergei N. Gladkovskii, Apr 12 2013
a(n) = A001065(3^n) where A001065(m) is the sum of the proper divisors of m for positive integer m. - Chayim Lowen, Mar 03 2015
a(n) = A000244(n) - A007051(n) = A007051(n)-1. - Yuchun Ji, Oct 23 2018
Sum_{n>=1} 1/a(n) = A321872. - Amiram Eldar, Nov 18 2020

Extensions

More terms from Michael Somos
Corrected my comment of Jan 10 2008. - Ross La Haye, Oct 29 2008
Removed comment that duplicated a formula. - Joerg Arndt, Mar 11 2010

A006516 a(n) = 2^(n-1)*(2^n - 1), n >= 0.

Original entry on oeis.org

0, 1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528, 140737479966720, 562949936644096
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of different lines determined by pair of vertices in an n-dimensional hypercube. The number of these lines modulo being parallel is in A003462. - Ola Veshta (olaveshta(AT)my-deja.com), Feb 15 2001
Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
a(n) is the number of n-letter words formed using four distinct letters, one of which appears an odd number of times. - Lekraj Beedassy, Jul 22 2003 [See, e.g., the Balakrishnan reference, problems 2.67 and 2.68, p. 69. - Wolfdieter Lang, Jul 16 2017]
Number of 0's making up the central triangle in a Pascal's triangle mod 2 gasket. - Lekraj Beedassy, May 14 2004
m-th triangular number, where m is the n-th Mersenne number, i.e., a(n)=A000217(A000225(n)). - Lekraj Beedassy, May 25 2004
Number of walks of length 2n+1 between two nodes at distance 3 in the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
The sequence of fractions a(n+1)/(n+1) is the 3rd binomial transform of (1, 0, 1/3, 0, 1/5, 0, 1/7, ...). - Paul Barry, Aug 05 2005
Number of monic irreducible polynomials of degree 2 in GF(2^n)[x]. - Max Alekseyev, Jan 23 2006
(A007582(n))^2 + a(n)^2 = A007582(2n). E.g., A007582(3) = 36, a(3) = 28; A007582(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
The sequence 6*a(n), n>=1, gives the number of edges of the Hanoi graph H_4^{n} with 4 pegs and n>=1 discs. - Daniele Parisse, Jul 28 2006
8*a(n) is the total border length of the 4*n masks used when making an order n regular DNA chip, using the bidimensional Gray code suggested by Pevzner in the book "Computational Molecular Biology." - Bruno Petazzoni (bruno(AT)enix.org), Apr 05 2007
If we start with 1 in binary and at each step we prepend 1 and append 0, we construct this sequence: 1 110 11100 1111000 etc.; see A109241(n-1). - Artur Jasinski, Nov 26 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which x does not equal y. - Ross La Haye, Jan 02 2008
Wieder calls these "conjoint usual 2-combinations." The set of "conjoint strict k-combinations" is the subset of conjoint usual k-combinations where the empty set and the set itself are excluded from possible selection. These numbers C(2^n - 2,k), which for k = 2 (i.e., {x,y} of the power set of a set) give {1, 0, 1, 15, 91, 435, 1891, 7875, 32131, 129795, 521731, ...}. - Ross La Haye, Jan 15 2008
If n is a member of A000043 then a(n) is also a perfect number (A000396). - Omar E. Pol, Aug 30 2008
a(n) is also the number whose binary representation is A109241(n-1), for n>0. - Omar E. Pol, Aug 31 2008
From Daniel Forgues, Nov 10 2009: (Start)
If we define a spoof-perfect number as:
A spoof-perfect number is a number that would be perfect if some (one or more) of its odd composite factors were wrongly assumed to be prime, i.e., taken as a spoof prime.
And if we define a "strong" spoof-perfect number as:
A "strong" spoof-perfect number is a spoof-perfect number where sigma(n) does not reveal the compositeness of the odd composite factors of n which are wrongly assumed to be prime, i.e., taken as a spoof prime.
The odd composite factors of n which are wrongly assumed to be prime then have to be obtained additively in sigma(n) and not multiplicatively.
Then:
If 2^n-1 is odd composite but taken as a spoof prime then 2^(n-1)*(2^n - 1) is an even spoof perfect number (and moreover "strong" spoof-perfect).
For example:
a(8) = 2^(8-1)*(2^8 - 1) = 128*255 = 32640 (where 255 (with factors 3*5*17) is taken as a spoof prime);
sigma(a(8)) = (2^8 - 1)*(255 + 1) = 255*256 = 2*(128*255) = 2*32640 = 2n is spoof-perfect (and also "strong" spoof-perfect since 255 is obtained additively);
a(11) = 2^(11-1)*(2^11 - 1) = 1024*2047 = 2096128 (where 2047 (with factors 23*89) is taken as a spoof prime);
sigma(a(11)) = (2^11 - 1)*(2047 + 1) = 2047*2048 = 2*(1024*2047) = 2*2096128 = 2n is spoof-perfect (and also "strong" spoof-perfect since 2047 is obtained additively).
I did a Google search and didn't find anything about the distinction between "strong" versus "weak" spoof-perfect numbers. Maybe some other terminology is used.
An example of an even "weak" spoof-perfect number would be:
n = 90 = 2*5*9 (where 9 (with factors 3^2) is taken as a spoof prime);
sigma(n) = (1+2)*(1+5)*(1+9) = 3*(2*3)*(2*5) = 2*(2*5*(3^2)) = 2*90 = 2n is spoof-perfect (but is not "strong" spoof-perfect since 9 is obtained multiplicatively as 3^2 and is thus revealed composite).
Euler proved:
If 2^k - 1 is a prime number, then 2^(k-1)*(2^k - 1) is a perfect number and every even perfect number has this form.
The following seems to be true (is there a proof?):
If 2^k - 1 is an odd composite number taken as a spoof prime, then 2^(k-1)*(2^k - 1) is a "strong" spoof-perfect number and every even "strong" spoof-perfect number has this form?
There is only one known odd spoof-perfect number (found by Rene Descartes) but it is a "weak" spoof-perfect number (cf. 'Descartes numbers' and 'Unsolved problems in number theory' links below). (End)
a(n+1) = A173787(2*n+1,n); cf. A020522, A059153. - Reinhard Zumkeller, Feb 28 2010
Also, row sums of triangle A139251. - Omar E. Pol, May 25 2010
Starting with "1" = (1, 1, 2, 4, 8, ...) convolved with A002450: (1, 5, 21, 85, 341, ...); and (1, 3, 7, 15, 31, ...) convolved with A002001: (1, 3, 12, 48, 192, ...). - Gary W. Adamson, Oct 26 2010
a(n) is also the number of toothpicks in the corner toothpick structure of A153006 after 2^n - 1 stages. - Omar E. Pol, Nov 20 2010
The number of n-dimensional odd theta functions of half-integral characteristic. (Gunning, p.22) - Michael Somos, Jan 03 2014
a(n) = A000217((2^n)-1) = 2^(2n-1) - 2^(n-1) is the nearest triangular number below 2^(2n-1); cf. A007582, A233327. - Antti Karttunen, Feb 26 2014
a(n) is the sum of all the remainders when all the odd numbers < 2^n are divided by each of the powers 2,4,8,...,2^n. - J. M. Bergot, May 07 2014
Let b(m,k) = number of ways to form a sequence of m selections, without replacement, from a circular array of m labeled cells, such that the first selection of a cell whose adjacent cells have already been selected (a "first connect") occurs on the k-th selection. b(m,k) is defined for m >=3, and for 3 <= k <= m. Then b(m,k)/2m ignores rotations and reflection. Let m=n+2, then a(n) = b(m,m-1)/2m. Reiterated, a(n) is the (m-1)th column of the triangle b(m,k)/2m, whose initial rows are (1), (1 2), (2 6 4), (6 18 28 8), (24 72 128 120 16), (120 360 672 840 496 32), (720 2160 4128 5760 5312 2016 64); see A249796. Note also that b(m,3)/2m = n!, and b(m,m)/2m = 2^n. Proofs are easy. - Tony Bartoletti, Oct 30 2014
Beginning at a(1) = 1, this sequence is the sum of the first 2^(n-1) numbers of the form 4*k + 1 = A016813(k). For example, a(4) = 120 = 1 + 5 + 9 + 13 + 17 + 21 + 25 + 29. - J. M. Bergot, Dec 07 2014
a(n) is the number of edges in the (2^n - 1)-dimensional simplex. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete plane graph in 2^n points. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete parallelotope graph in n dimensions. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_4. - Álvar Ibeas, Nov 26 2015
a(n) gives the quadratic coefficient of the polynomial ((x + 1)^(2^n) + (x - 1)^(2^n))/2, cf. A201461. - Martin Renner, Jan 14 2017
Let f(x)=x+2*sqrt(x) and g(x)=x-2*sqrt(x). Then f(4^n*x)=b(n)*f(x)+a(n)*g(x) and g(4^n*x)=a(n)*f(x)+b(n)*g(x), where b is A007582. - Luc Rousseau, Dec 06 2018
For n>=1, a(n) is the covering radius of the first order Reed-Muller code RM(1,2n). - Christof Beierle, Dec 22 2021
a(n) =

Examples

			G.f. = x + 6*x^2 + 28*x^3 + 120*x^4 + 496*x^5 + 2016*x^6 + 8128*x^7 + 32640*x^8 + ...
		

References

  • V. K. Balakrishnan, Theory and problems of Combinatorics, "Schaum's Outline Series", McGraw-Hill, 1995, p. 69.
  • Martin Gardner, Mathematical Carnival, "Pascal's Triangle", p. 201, Alfred A. Knopf NY, 1975.
  • Richard K. Guy, Unsolved problems in number theory, (p. 72).
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • Clifford A. Pickover, Wonders of Numbers, Chap. 55, Oxford Univ. Press NY 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A006095(n+1) - A006095(n). In other words, A006095 gives the partial sums.
Cf. A000043, A000396. - Omar E. Pol, Aug 30 2008
Cf. A109241, A139251, A153006. - Omar E. Pol, Aug 31 2008, May 25 2010, Nov 20 2010
Cf. A002450, A002001. - Gary W. Adamson, Oct 26 2010
Cf. A049072, A000384, A201461, A005059 (binomial transform, and special 5-letter words), A065442, A211705.
Cf. A171476.

Programs

  • GAP
    List([0..25],n->2^(n-1)*(2^n-1)); # Muniru A Asiru, Dec 06 2018
  • Haskell
    a006516 n = a006516_list !! n
    a006516_list = 0 : 1 :
        zipWith (-) (map (* 6) $ tail a006516_list) (map (* 8) a006516_list)
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [2^(n-1)*(2^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    GBC := proc(n,k,q) local i; mul( (q^(n-i)-1)/(q^(k-i)-1),i=0..k-1); end; # define q-ary Gaussian binomial coefficient [ n,k ]_q
    [ seq(GBC(n+1,2,2)-GBC(n,2,2), n=0..30) ]; # produces A006516
    A006516:=1/(4*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation
    seq(binomial(2^n, 2), n=0..19); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[2^(n - 1)(2^n - 1), {n, 0, 30}] (* or *) LinearRecurrence[{6, -8}, {0, 1}, 30] (* Harvey P. Dale, Jul 15 2011 *)
  • Maxima
    A006516(n):=2^(n-1)*(2^n - 1)$ makelist(A006516(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n)=(1<Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    vector(100, n, n--; 2^(n-1)*(2^n-1)) \\ Altug Alkan, Oct 06 2015
    
  • Python
    for n in range(0, 30): print(2**(n-1)*(2**n - 1), end=', ') # Stefano Spezia, Dec 06 2018
    
  • Sage
    [lucas_number1(n,6,8) for n in range(24)]  # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [(4**n - 2**n) / 2 for n in range(24)]  # Zerinvary Lajos, Jun 05 2009
    

Formula

G.f.: x/((1 - 2*x)*(1 - 4*x)).
E.g.f. for a(n+1), n>=0: 2*exp(4*x) - exp(2*x).
a(n) = 2^(n-1)*Stirling2(n+1,2), n>=0, with Stirling2(n,m)=A008277(n,m).
Second column of triangle A075497.
a(n) = Stirling2(2^n,2^n-1) = binomial(2^n,2). - Ross La Haye, Jan 12 2008
a(n+1) = 4*a(n) + 2^n. - Philippe Deléham, Feb 20 2004
Convolution of 4^n and 2^n. - Ross La Haye, Oct 29 2004
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} 4^(n-j)*binomial(j,k). - Paul Barry, Aug 05 2005
a(n+2) = 6*a(n+1) - 8*a(n), a(1) = 1, a(2) = 6. - Daniele Parisse, Jul 28 2006 [Typo corrected by Yosu Yurramendi, Aug 06 2008]
Row sums of triangle A134346. Also, binomial transform of A048473: (1, 5, 17, 53, 161, ...); double bt of A151821: (1, 4, 8, 16, 32, 64, ...) and triple bt of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
a(n) = 3*Stirling2(n+1,4) + Stirling2(n+2,3). - Ross La Haye, Jun 01 2008
a(n) = (4^n - 2^n)/2.
a(n) = A153006(2^n-1). - Omar E. Pol, Nov 20 2010
Sum_{n>=1} 1/a(n) = 2 * (A065442 - 1) = A211705 - 2. - Amiram Eldar, Dec 24 2020
a(n) = binomial(2*n+2, n+1) - Catalan(n+2). - N. J. A. Sloane, Apr 01 2021
a(n) = A171476(n-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Jul 27 2022

A001576 a(n) = 1^n + 2^n + 4^n.

Original entry on oeis.org

3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0

Views

Author

Keywords

Comments

Equals A135576, except for the first term. - Omar E. Pol, Nov 18 2008
Conjecture: For n > 1, if a(n) = 1^n + 2^n + 4^n is a prime number then n is of the form 3^h. For example, for h=1, n=3, a(n) = 1^3 + 2^3 + 4^3 = 73 (prime); for h=2, n=9, a(n) = 1^9 + 2^9 + 4^9 = 262657 (prime); for h=3, n=27, a(n) is not prime. - Vincenzo Librandi, Aug 03 2010
The previous conjecture was proved by Golomb in 1978. See A051154. - T. D. Noe, Aug 15 2010
Another more elementary proof can be found in Liu link. - Bernard Schott, Mar 08 2019
Fills in one quarter section of the figurate form of the Sierpinski square curve. See illustration in links and A141725. - John Elias, Mar 29 2023

Crossrefs

Subsequence of A002061.
See also comments in A051154.

Programs

Formula

a(n) = 6*a(n-1) - 8*a(n-2) + 3.
O.g.f.: -1/(-1+x) - 1/(-1+2*x) - 1/(-1+4*x) = ( -3+14*x-14*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Feb 29 2008
E.g.f.: e^x + e^(2*x) + e^(4*x). - Mohammad K. Azarian, Dec 26 2008
a(n) = A024088(n)/A000225(n). - Reinhard Zumkeller, Feb 15 2009
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 35*x^2 + 155*x^3 + ... is the o.g.f. for the 2nd subdiagonal of triangle A022166, essentially A006095. - Peter Bala, Apr 07 2015

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A160870 Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 7, 13, 15, 1, 1, 6, 35, 40, 31, 1, 1, 12, 31, 155, 121, 63, 1, 1, 8, 91, 156, 651, 364, 127, 1, 1, 15, 57, 600, 781, 2667, 1093, 255, 1, 1, 13, 155, 400, 3751, 3906, 10795, 3280, 511, 1, 1, 18, 130, 1395, 2801, 22932, 19531, 43435, 9841, 1023, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Examples

			Array begins:
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
  1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,...
  1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,...
  1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,...
  1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,...
  ...
		

References

  • Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]

Crossrefs

Programs

  • Mathematica
    T[, 1] = 1; T[1, ] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    T(n,k)={ if ( (n==1) || (k==1), 1, sumdiv(n,d, d*T(d, k-1)) ) }

Formula

T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1).
From Álvar Ibeas, Oct 31 2015: (Start)
T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1).
T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p). (End)

A006116 Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.

Original entry on oeis.org

1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605, 8933488744, 488176700923, 37558989808526, 4073773336877345, 623476476706836148, 134732283882873635911, 41128995468748254231002, 17741753171749626840952685, 10817161765507572862559462656
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear codes of length n and any dimension.
Equivalently, number of subgroups of the Abelian group (C_2)^n.
Let V_n be an n-dimensional vector space over a field with 2 elements. Let P(V_n) be the collection of all subspaces of V_n. Then a(n-1) is the number of times any given nonzero vector of V_n appears in P(V_n). - Geoffrey Critzer, Jun 05 2017
With V_n and P(V_n) as above, a(n) is also the cardinality of P(V_n). - Vaia Patta, Jun 25 2019

Examples

			O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-2x)) + x^2/((1-x)*(1-2x)*(1-4x)) + x^3/((1-x)*(1-2x)*(1-4x)*(1-8x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,5,16,67,374,2825,29212,...] = BINOMIAL([1,1,2,6,26,158,1330,...]); see A135922;
[1,2,6,26,158,1330,15414,245578,...] = BINOMIAL([1,1,3,13,83,749,...]);
[1,3,13,83,749,9363,160877,...] = BINOMIAL^2([1,1,5,33,317,4361,...]);
[1,5,33,317,4361,82789,2148561,...] = BINOMIAL^4([1,1,9,97,1433,...]);
[1,9,97,1433,30545,902601,...] = BINOMIAL^8([1,1,17,321,7601,252833,...]);
etc.
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516. Row sums of A022166.
Cf. A005329, A083906. - Paul D. Hanna, Nov 29 2008

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)+(2^(n-2)-1)*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 12 2014
  • Maple
    gf:= m-> add(x^n/mul(1-2^k*x, k=0..n), n=0..m):
    a:= n-> coeff(series(gf(n), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 24 2012
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          2^m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2021
  • Mathematica
    faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); a[n_] := Sum[qbin[n, k, 2], {k, 0, n}]; a /@ Range[0, 19] (* Jean-François Alcover, Jul 21 2011 *)
    Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(2^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
    QP = QPochhammer; a[n_] := Sum[QP[2, 2, n]/(QP[2, 2, k]*QP[2, 2, n-k]), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 23 2015 *)
    Table[Sum[QBinomial[n, k, 2], {k, 0, n}], {n, 0, 19}] (* Ivan Neretin, Mar 28 2016 *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-2^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
    
  • PARI
    a(n,q=2)=sum(k=0,n,prod(i=1,n-k,(q^(i+k)-1)/(q^i-1))) \\ Paul D. Hanna, Nov 29 2008
    

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 2^k*x). - Paul D. Hanna, Dec 06 2007
From Paul D. Hanna, Nov 29 2008: (Start)
Coefficients of the square of the q-exponential of x evaluated at q=2, where the q-exponential of x = Sum_{n>=0} x^n/F(n) and F(n) = Product{i=1..n} (q^i-1)/(q-1) is the q-factorial of n.
G.f.: (Sum_{k=0..n} x^n/F(n))^2 = Sum_{k=0..n} a(n)*x^n/F(n) where F(n) = A005329(n) = Product{i=1..n} (2^i - 1).
a(n) = Sum_{k=0..n} F(n)/(F(k)*F(n-k)) where F(n)=A005329(n) is the 2-factorial of n.
a(n) = Sum_{k=0..n} Product_{i=1..n-k} (2^(i+k) - 1)/(2^i - 1).
a(n) = Sum_{k=0..A033638(n)} A083906(n,k)*2^k. (End)
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2^k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) = 2*a(n-1) + (2^(n-1)-1)*a(n-2). [Hitzemann and Hochstattler]. - R. J. Mathar, Aug 21 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2] / QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2] / QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A010036 Sum of 2^n, ..., 2^(n+1) - 1.

Original entry on oeis.org

1, 5, 22, 92, 376, 1520, 6112, 24512, 98176, 392960, 1572352, 6290432, 25163776, 100659200, 402644992, 1610596352, 6442418176, 25769738240, 103079084032, 412316598272, 1649266917376, 6597068718080, 26388276969472, 105553112072192, 422212456677376
Offset: 0

Views

Author

Steve King (ITTTUCSON(AT)aol.com)

Keywords

Comments

a(n) = sum of next 2^n natural numbers. - Amarnath Murthy, Apr 17 2003
Sum of all proper binary numbers with n digits (i.e. those not beginning with 0). Cf. A101291 Sum of all numbers with n digits [base 10]. - Jonathan Vos Post, Sep 07 2006
a(n)/2^n gives the average eccentricity of the graphs of the Chinese rings puzzle with n+1 rings (also known as baguenaudier). - Daniele Parisse, Jun 02 2008

Crossrefs

Cf. A010036.
Partial sums are in A006516, A006095.

Programs

  • Magma
    [ &+[ k: k in [2^n..2^(n+1)-1] ]: n in [0..21] ]; // Klaus Brockhaus, Nov 27 2009
    
  • Magma
    [2^n *(2^n+(2^(n+1)-1))/2: n in [0..25]]; // Vincenzo Librandi, Sep 11 2015
  • Maple
    f:= n-> 3*2^(2*n-1)-2^(n-1): seq(f(n), n=0..30);
  • Mathematica
    Table[2^n (2^n+(2^(n+1)-1))/2,{n,0,25}] (* or *) LinearRecurrence[{6,-8},{1,5},30] (* Harvey P. Dale, Jan 23 2012 *)
    With[{nn=30},Total/@TakeList[Range[2^(nn+1)-1],2^Range[0,nn]]] (* Harvey P. Dale, May 26 2024 *)
  • PARI
    a(n)=3<<(2*n-1)-1<<(n-1) \\ Charles R Greathouse IV, Jul 02 2013
    

Formula

a(n+1) = 4*a(n) + 2^n with a(0) = 1 (with a(0)=0, see A006516). a(n) = 2^(n-1)*A055010(n). - Philippe Deléham, Feb 20 2004
a(n) = 3*2^(2*n-1) - 2^(n-1). - Daniele Parisse, Jun 10 2007
From Klaus Brockhaus, Nov 27 2009: (Start)
a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1-x)/((1-2*x)*(1-4*x)). (End)
a(n) = Sum_{k, 0<=k<=n} A125185(n,k)*2^k. - Philippe Deléham, Feb 26 2012
a(n) = A006516(n+1)-A006516(n). - R. J. Mathar, Mar 06 2017

A022167 Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0

Views

Author

Keywords

Comments

The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157783(n,k). - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   13,     13,        1;
  1,   40,    130,       40,        1;
  1,  121,   1210,     1210,      121,        1;
  1,  364,  11011,    33880,    11011,      364,      1;
  1, 1093,  99463,   925771,   925771,    99463,   1093,    1;
  1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Columns k=0..3 give A000012, A003462, A006100, A006101.
Cf. A006117 (row sums).

Programs

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(n,k) = Sum_{j=0..k} C(n,j)*qStirling2(n-j,n-k,3)*(2)^(k-j),j,0,k), n >= k, where qStirling2(n,k,3) is triangle A333143. - Vladimir Kruchinin, Mar 07 2020
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 3^j - 1. - Seiichi Manyama, May 09 2025
Showing 1-10 of 79 results. Next