cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.

Original entry on oeis.org

1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, 162700898, 6801417318, 394502066810, 31849226170622, 3589334331706258, 566102993389615254, 125225331231990004138, 38920655753545108286254, 17021548688670112527781058, 10486973328106497739526535366
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2007

Keywords

Comments

Let B = {v_1,v_2,...,v_n} be a basis for F_2^n. a(n) is the number of subspaces of F_2^n that do not contain any of the vectors in B. Moreover, for 1<=k<=n, let S be a size k subset of B. a(k) is the number of subspaces of F_2^n that do not contain any of the vectors in S but do contain all the vectors in B - S. - Geoffrey Critzer, May 03 2025
Also number of Stanley graphs on n nodes. For precise definition see Knuth (1997). - Alois P. Heinz, Sep 24 2019
Also the number of naturally labeled posets on [n] with height at most two. - David Bevan, Jul 28 2022; Nov 16 2023
Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple aManfred Scheucher, Jan 05 2024

Examples

			O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    a:= proc(n) option remember;
          add(b(n-j)*binomial(n,j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
    b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
    a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
    a /@ Range[0, 19] (* Jean-François Alcover, Mar 10 2020, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
    
  • Sage
    # After Vladimir Kruchinin.
    def a(n):
        @cached_function
        def T(n, k):
            if k == 1 or k == n: return 1
            return (2^k-1)*T(n-1, k) + T(n-1, k-1)
        return sum(T(n, k) for k in (1..n)) if n > 0 else 1
    print([a(n) for n in (0..19)]) # Peter Luschny, Feb 26 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - (2^k-1)*x).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*(2^k-1))/(1-x/(x-1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2]/QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2]/QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 23 2013
a(n) = Sum_{k=0..n} qStirling2(n,k), where qStirling2 is the triangle A139382. - Vladimir Kruchinin, Feb 26 2020
G.f.: f(1), where f(y) = 1 + x*((y-1)*f(y) + f(2*y)). - David Bevan, Jul 28 2022
E.g.f.: exp(-x)*g(x) where g(x) is the e.g.f. for A006116. (given in D. E. Knuth link) - Geoffrey Critzer, May 03 2025

Extensions

References for Stanley graphs added by David Bevan, Jul 24 2024

A227961 Triangle T(n,k) read by rows: how often does k appear among the first A006116(n) entries of A198260?

Original entry on oeis.org

2, 3, 2, 4, 8, 2, 2, 5, 22, 8, 24, 2, 2, 2, 2, 6, 52, 22, 150, 8, 24, 24, 72, 2, 2, 2, 2, 2, 2, 2, 2, 7, 114, 52, 740, 22, 150, 150, 1046, 8, 24, 24, 72, 24, 72, 72, 216, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 240, 114, 3282, 52, 740
Offset: 1

Views

Author

Tilman Piesk, Aug 01 2013

Keywords

Comments

T(n,k) shows how often k appears among the first A006116(n) entries of A198260.
n and k are counted from 1:
2,
3, 2,
4, 8, 2, 2,
5, 22, 8, 24, 2, 2, 2, 2,
6, 52,22,150, 8, 24, 24, 72,2, 2, 2, 2, 2, 2, 2, 2,
7,114,52,740,22,150,150,1046,8,24,24,72,24,72,72,216,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
The number of different entries per row is 1,2,3,5,8,12,16...
The second column 2,8,22,52,114,240... seems to appear in other columns as well.
Row lengths are powers of two (A000079).
Row sums are the sums of Gaussian binomial coefficients (A006116).

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A076831 Triangle T(n,k) read by rows giving number of inequivalent binary linear [n,k] codes (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 16, 22, 16, 6, 1, 1, 7, 23, 43, 43, 23, 7, 1, 1, 8, 32, 77, 106, 77, 32, 8, 1, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 1, 11, 71, 333, 1060, 1988, 1988
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2002

Keywords

Comments

"The familiar appearance of the first few rows [...] provides a good example of the perils of too hasty extrapolation in mathematics." - Slepian.
The difference between this triangle and the one for which it can be so easily mistaken is A250002. - Tilman Piesk, Nov 10 2014.

Examples

			     k    0   1   2   3    4    5    6    7    8   9  10  11        sum
   n
   0      1                                                           1
   1      1   1                                                       2
   2      1   2   1                                                   4
   3      1   3   3   1                                               8
   4      1   4   6   4    1                                         16
   5      1   5  10  10    5    1                                    32
   6      1   6  16  22   16    6    1                               68
   7      1   7  23  43   43   23    7    1                         148
   8      1   8  32  77  106   77   32    8    1                    342
   9      1   9  43 131  240  240  131   43    9   1                848
  10      1  10  56 213  516  705  516  213   56  10   1           2297
  11      1  11  71 333 1060 1988 1988 1060  333  71  11   1       6928
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint No. 1693, Tech. Hochschule Darmstadt, 1994

Crossrefs

Cf. A006116, A022166, A076766 (row sums).
A034356 gives same table but with the k=0 column omitted.
Columns include A000012 (k=0), A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. (See also some of the links above.)
(End)

A018216 Maximal number of subgroups in a group with n elements.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 16, 6, 8, 2, 16, 2, 10, 4, 67, 2, 28, 2, 22, 10, 14, 2, 54, 8, 16, 28, 28, 2, 28, 2, 374, 4, 20, 4, 78, 2, 22, 16, 76, 2, 36, 2, 40, 12, 26, 2, 236, 10, 64, 4, 46, 2, 212, 14, 98, 22, 32, 2, 80, 2, 34, 36, 2825, 4, 52, 2, 58, 4, 52, 2, 272
Offset: 1

Views

Author

Ola Veshta (olaveshta(AT)my-deja.com), May 23 2001

Keywords

Comments

For n >= 2 a(n)>=2 with equality iff n is prime.
The minimal number of subgroups is A000005, the number of divisors of n, attained by the cyclic group of order n. - Charles R Greathouse IV, Dec 27 2016

Examples

			a(6) = 6 because there are two groups with 6 elements: C_6 with 4 subgroups and S_3 with 6 subgroups.
		

Crossrefs

Cf. A061034.

Programs

  • GAP
    a:=function(n)
      local gr, mx, t, g;
      mx := 0;
      gr := AllSmallGroups(n);
      for g in gr do
        t := Sum(ConjugacyClassesSubgroups(g),Size);
        mx := Maximum(mx, t);
      od;
      return mx;
    end; # Charles R Greathouse IV, Dec 27 2016

Formula

a(n)=Maximum of {A061034(n), A083573(n)}. - Lekraj Beedassy, Oct 22 2004
(C_2)^m has A006116(m) subgroups, so this is a lower bound if n is a power of 2 (e.g., a(16) >= 67). - N. J. A. Sloane, Dec 01 2007

Extensions

More terms from Victoria A. Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003
More terms from Eric M. Schmidt, Sep 07 2012

A182176 Number of affine subspaces of GF(2)^n.

Original entry on oeis.org

1, 3, 11, 51, 307, 2451, 26387, 387987, 7866259, 221472147, 8703733139, 479243212179, 37070813107603, 4036214347068819, 619402703369958803, 134108807406166799763, 40994263184865380595091, 17700624176280878586721683, 10799420012335823235718509971
Offset: 0

Views

Author

Gaëtan Leurent, Apr 16 2012

Keywords

Comments

q-binomial transform of A000079 for q=2. - Vladimir Reshetnikov, Oct 17 2016
From Geoffrey Critzer, Jul 15 2017: (Start)
a(n) is the total number of vectors in all subspaces of GF(2)^n.
a(n) is the number of subspaces of GF(2)^(n+1) that do not contain a given nonzero vector. (End)

Examples

			For n=2, there are 4 affine subspaces of dimension 0, 6 of dimension 1, and 1 of dimension 2.
		

Crossrefs

Cf. A006116.

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->(2^n/2^k*Product([0..k-1],i->(2^n-2^i)/(2^k-2^i))))); # Muniru A Asiru, Aug 01 2018
  • Mathematica
    Table[Sum[2^n/2^k * Product[(2^n-2^i)/(2^k-2^i),{i,0,k-1}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 22 2014 *)
    Table[Sum[QBinomial[n, k, 2] 2^k, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 17 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m+1,1-2^k*x+x*O(x^n))),n)} /* Paul D. Hanna, May 01 2012 */
    
  • Sage
    def a(n): return sum([(2^n/2^k)*prod([(2^n-2^i)/(2^k-2^i) for i in [0..k-1]]) for k in [0..n]])
    

Formula

a(n) = Sum_{k=0..n} (2^n/2^k * Product_{i=0..k-1} (2^n - 2^i)/(2^k - 2^i)).
G.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-2^k*x). - Paul D. Hanna, May 01 2012
a(n) ~ c * 2^((n+1)^2/4), where c = EllipticTheta[2, 0, 1/2] / QPochhammer[1/2, 1/2] = A242939 = 7.3719494907662273375414118336... if n is even, and c = EllipticTheta[3, 0, 1/2] / QPochhammer[1/2, 1/2] = A242938 = 7.3719688014613165091531912082... if n is odd. - Vaclav Kotesovec, Jun 22 2014
a(n) = (2^n - 1)*A006116(n-1) + A006116(n). - Geoffrey Critzer, Jul 15 2017

A190939 Subgroups of nimber addition interpreted as binary numbers.

Original entry on oeis.org

1, 3, 5, 9, 15, 17, 33, 51, 65, 85, 105, 129, 153, 165, 195, 255, 257, 513, 771, 1025, 1285, 1545, 2049, 2313, 2565, 3075, 3855, 4097, 4369, 4641, 5185, 6273, 8193, 8481, 8721, 9345, 10305, 12291, 13107, 15555, 16385, 16705, 17025, 17425, 18465, 20485, 21845
Offset: 0

Views

Author

Tilman Piesk, May 24 2011

Keywords

Comments

Each subgroup {0,a,b,...} of nimber addition can be assigned an integer 1+2^a+2^b+...
These integers ordered by size give this sequence.
Without nimbers the sequence may be defined as follows:
The powerset af a set {0,...,n-1} with the symmetric difference as group operation forms the elementary abelian group (Z_2)^n.
The elements of the group can be numbered lexicographically from 0 to 2^n-1, with 0 representing the neutral element:
{}-->0 , {0}-->2^0=1 , {1}-->2^1=2 , {0,1}-->2^0+2^1=3 , ... , {0,...,n-1}-->2^n-1
So the subgroups of (Z_2)^n can be represented by subsets of {0,...,2^n-1}.
So each subgroup {0,a,b,...} of (Z_2)^n can be assigned an integer 1+2^a+2^b+...
For each (Z_2)^n there is a finite sequence of these numbers ordered by size, and it is the beginning of the finite sequence for (Z_2)^(n+1).
This leads to the infinite sequence:
* 1, (1 until here for (Z_2)^0)
* 3, (2 until here for (Z_2)^1)
* 5, 9, 15, (5 until here for (Z_2)^2)
* 17, 33, 51, 65, 85, 105, 129, 153, 165, 195, 255, (16 until here for (Z_2)^3)
* 257, 513, 771, 1025, 1285, 1545, 2049, 2313, 2565, 3075, 3855, 4097, 4369, 4641, 5185, 6273, 8193, 8481, 8721, 9345, 10305, 12291, 13107, 15555, 16385, 16705, 17025, 17425, 18465, 20485, 21845, 23205, 24585, 26265, 26985, 32769, 33153, 33345, 33825, 34833, 36873, 38505, 39321, 40965, 42405, 43605, 49155, 50115, 52275, 61455, 65535, (67 until here for (Z_2)^4)
* 65537, ...
The number of subgroups of (Z_2)^n is 1, 2, 5, 16, 67, 374, 2825, ... (A006116)
Comment from Tilman Piesk, Aug 27 2013: (Start)
Boolean functions correspond to integers, and belong to small equivalence classes (sec). So a sec can be seen as an infinite set of integers (represented in A227722 by the smallest one). Some secs contain only one odd integer. These unique odd integers, ordered by size, are shown in this sequence. (While the smallest integers from these secs are shown in A227963.)
(End)

Examples

			The 5 subgroups of the Klein four-group (Z_2)^2 and corresponding integers are:
{0      }     -->     2^0                     =   1
{0,1    }     -->     2^0 + 2^1               =   3
{0,  2  }     -->     2^0       + 2^2         =   5
{0,    3}     -->     2^0             + 2^3   =   9
{0,1,2,3}     -->     2^0 + 2^1 + 2^2 + 2^3   =  15
		

Crossrefs

Cf. A227963 (the same small equivalence classes represented by entries of A227722)
Cf. A198260 (number of runs of ones in the binary strings)
Subsequences:
Cf. A051179 (2^2^n-1).
Cf. A083318 (2^n+1).
Cf. A001317 (rows of the Sierpinski triangle read like binary numbers).
Cf. A228540 (rows of negated binary Walsh matrices r.l.b.n.).
Cf. A122569 (negated iterations of the Thue-Morse sequence r.l.b.n.).

Extensions

Offset changed to 0 by Tilman Piesk, Jan 25 2012

A289539 Number of ways to choose a subspace U of GF(2)^n and then choose a subspace of U.

Original entry on oeis.org

1, 3, 12, 66, 513, 5769, 95706, 2379348, 89759799, 5188919427, 463209471288, 64236626341974, 13903296824817117, 4713694025825766861, 2510421030027019810854, 2104931848782489253483752, 2783505220978001187684672531, 5813031971452642599096778614183
Offset: 0

Views

Author

Geoffrey Critzer, Jul 12 2017

Keywords

Comments

A q-analog (q=2) of A000244.

Crossrefs

Programs

  • Mathematica
    nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
    Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[ Series[eq[z]^3 /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum_{k=0..n} A022166(n,k)*A006116(k).
a(n)/[n]_q! is the coefficient of x^n in the expansion of exp_q(x)^3 when q -> 2 and where exp_q(x) is the q-exponential function and [n]_q! is the q-factorial of n.

A015195 Sum of Gaussian binomial coefficients for q=9.

Original entry on oeis.org

1, 2, 12, 184, 9104, 1225248, 540023488, 652225844096, 2584219514040576, 28081351726592246272, 1001235747932175990213632, 97915621602690773814148184064, 31420034518763282871588038742544384, 27654326463468067495668136467306727743488
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Row sums of triangle A022173.

Programs

  • Mathematica
    Total/@Table[QBinomial[n, m, 9], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
    Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(9^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)

Formula

a(n) = 2*a(n-1)+(9^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 9^(n^2/4), where c = EllipticTheta[3,0,1/9]/QPochhammer[1/9,1/9] = 1.3946866902389... if n is even and c = EllipticTheta[2,0,1/9]/QPochhammer[1/9,1/9] = 1.333574200539... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A061034 Maximal number of subgroups in an Abelian group with n elements.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 16, 6, 4, 2, 10, 2, 4, 4, 67, 2, 12, 2, 10, 4, 4, 2, 32, 8, 4, 28, 10, 2, 8, 2, 374, 4, 4, 4, 30, 2, 4, 4, 32, 2, 8, 2, 10, 12, 4, 2, 134, 10, 16, 4, 10, 2, 56, 4, 32, 4, 4, 2, 20, 2, 4, 12, 2825, 4, 8, 2, 10, 4, 8, 2, 96, 2, 4, 16, 10, 4, 8, 2, 134, 212, 4, 2
Offset: 1

Views

Author

Ola Veshta (olaveshta(AT)my-deja.com), May 26 2001

Keywords

Comments

a(n) is multiplicative: if m and n are relatively prime then a(m*n) = a(n) * a(m). For n >= 2, a(n)>=2 with equality iff n is prime.

Examples

			a(16) = 67: C16 has 5 subgroups, C2 X C8 has 11 subgroups, (C2)^2 X C4 has 27 subgroups, (C2)^4 has 67 subgroups, (C4)^2 has 15 subgroups.
		

Crossrefs

Programs

  • PARI
    { A061034(n) = my(f=factorint(n)); prod(i=1,#f~, vecmax( apply( x->numsubgrp(f[i,1],x), partitions(f[i,2]) ) ) ); } \\ See Alekseyev link for numsubgrp(), Max Alekseyev, 2008

Formula

(C_2)^m has A006116(m) subgroups, so this is a lower bound if n is a power of 2 (e.g. a(16) >= 67). - N. J. A. Sloane, Dec 01 2007

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003
Showing 1-10 of 26 results. Next