cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A034356 Triangle read by rows giving T(n,k) = number of inequivalent linear [n,k] binary codes (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 16, 22, 16, 6, 1, 7, 23, 43, 43, 23, 7, 1, 8, 32, 77, 106, 77, 32, 8, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 11, 71, 333, 1060, 1988, 1988, 1060, 333, 71, 11, 1, 12, 89
Offset: 1

Views

Author

Keywords

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  4,   1;
  5, 10, 10,   5,  1;
  6, 16, 22,  16,  6,  1;
  7, 23, 43,  43, 23,  7, 1;
  8, 32, 77, 106, 77, 32, 8, 1;
  ...
		

Crossrefs

This is A076831 with the k=0 column omitted.
Columns include A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034356col(k, length):
        R = PowerSeriesRing(ZZ, 'x', default_prec=length)
        x = R.gen().O(length)
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034356col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=1: x/(1-x)^2.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. For some cases, see also the links above.
(End)

A034198 Number of binary codes (not necessarily linear) of length n with 3 words.

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 23, 32, 43, 56, 71, 89, 109, 132, 158, 187, 219, 255, 294, 337, 384, 435, 490, 550, 614, 683, 757, 836, 920, 1010, 1105, 1206, 1313, 1426, 1545, 1671, 1803, 1942, 2088, 2241, 2401, 2569, 2744, 2927, 3118, 3317, 3524, 3740
Offset: 1

Views

Author

Keywords

Comments

Number of distinct triangles on vertices of n-dimensional cube.
Also, a(n) is the number of orbits of C_2^2 subgroups of C_2^n under automorphisms of C_2^n.
Also, a(n) is the number of faithful representations of C_2^2 of dimension n up to equivalence by automorphisms of (C_2^2).
Also, a([n/2]) is equal to the number of partitions mu such that there exists a C_2^2 subgroup G of S_n such that the i^th largest (nontrivial) product of 2-cycles in G consists of mu_i 2-cycles (see below example). - John M. Campbell, Jan 22 2016

Examples

			Let t denote the trivial representation and u_1, u_2, u_3 the three nontrivial irreducible representations of C_2^2 (so the u_i are all equivalent up to automorphisms of C_2^2). Then the a(4) = 6 faithful representations of dimension 4 are:
  2t+u_1+u_2; t+2u_1+u_2; t+u_1+u_2+u_3;
  3u_1+u_2;   2u_1+2u_2;  2u_1+u_2+u_3.
From _John M. Campbell_, Jan 22 2016: (Start)
Letting n=8, there are a([n/2])=a(4)=6 partitions mu such that there exists a Klein four-subgroup G of S_n such that the i^th largest (nontrivial) product of 2-cycles in G consists of mu_i 2-cycles, as indicated below:
{2, 1, 1} <-> {(12)(34), (12), (34), id}
{3, 2, 1} <-> {(12)(34)(56), (34)(56), (12), id}
{2, 2, 2} <-> {(12)(34), (34)(56), (56)(12), id}
{4, 3, 1} <-> {(12)(34)(56)(78), (34)(56)(78), (12), id}
{4, 2, 2} <-> {(12)(34)(56)(78), (56)(78), (12)(34), id}
{3, 3, 2} <-> {(12)(34)(56), (34)(56)(78), (12)(78), id}
(End)
		

Crossrefs

Cf. A034188.
Column k=2 of both A034356 and A076831 (which are the same except for column k=0).

Programs

Formula

a(n) = floor(n*(2*n^2 + 21*n - 6)/72).
G.f.: (-x^5 + x^3 + x^2)/((1 - x)^2*(1 - x^2)*(1 - x^3)) = 1/((1 - x)^2*(1 - x^2)*(1 - x^3)) - 1/(1 - x)^2.
a(1) = 0, a(2) = 1, a(3) = 3, a(4) = 6, a(5) = 10, a(6) = 16, a(7) = 23, and a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7) for n >= 8. [Harvey P. Dale, Dec 25 2011]
From Irena Swanson, Feb 11 2024: (Start)
The roots of the characteristic polynomial corresponding to the above recurrence are 1, 1, 1, 1, -1, -1/2 - sqrt(-3)/2 and -1/2 + sqrt(-3)/2. The corresponding closed form is:
a(n) = -25/144 - n/12 + 7n^2/24 + n^3/36 + (-1)^n/16 + (1/18 + sqrt(-3)/54)(-1/2 - sqrt(-3)/2)^n + (1/18 - sqrt(-3)/54)(-1/2 + sqrt(-3)/2)^n for n >= 1. (End)

Extensions

Additional comments from Max Alekseyev, Jul 09 2006
Additional comments from Andrew Rupinski, Jan 20 2010

A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 68, 148, 342, 848, 2297, 6928, 24034, 98854, 503137, 3318732, 29708814, 374039266, 6739630253, 173801649708, 6356255181216, 326203517516704, 23294352980140884, 2301176047764925736, 313285408199180770635, 58638266023262502962716
Offset: 0

Views

Author

Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002

Keywords

Examples

			a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates.
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994.

Crossrefs

Row sums of triangle A076831. Cf. A034328, A055545.

Extensions

Edited by N. J. A. Sloane, Nov 01 2007, at the suggestion of Gordon Royle.

A076832 Triangle T(n,k), read by rows, giving the total number of inequivalent binary linear [n,i] codes with no column of zeros, summed for i <= k (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 7, 19, 30, 35, 36, 1, 8, 29, 56, 73, 79, 80, 1, 10, 44, 107, 161, 186, 193, 194, 1, 12, 66, 200, 363, 462, 497, 505, 506, 1, 14, 96, 372, 837, 1222, 1392, 1439, 1448, 1449, 1, 16, 136, 680, 1963, 3435, 4282
Offset: 1

Views

Author

N. J. A. Sloane, Nov 21 2002

Keywords

Comments

From Petros Hadjicostas, Sep 30 2019: (Start)
It seems that Harald Fripertinger at his website defines T(n,k) = T(n,n) for k > n (and thus he gets an orthogonal array). It seems that T(n,n) = A034343(n).
It seems that T(n,k=2) = A001399(n) for n >= 2 (with A001399(n=1) = T(1,1)); T(n,k=3) = A034337(n) for n >= 3 (with A034337(n) = T(n,n) for 1 <= n <= 2); T(n,k=4) = A034338(n) for n >= 4 (with A034338(n) = T(n,n) for 1 <= n <= 3); and so on. See the Crossrefs below for more information.
To get the g.f. of column k (starting at n = 0 with T(n=0,k) := 1 rather than at n = k), modify the Sage program below (cf. function f).
(End)

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1,  2;
  1,  3,  4;
  1,  4,  7,   8;
  1,  5, 11,  15,  16;
  1,  7, 19,  30,  35,  36;
  1,  8, 29,  56,  73,  79,  80;
  1, 10, 44, 107, 161, 186, 193, 194; ...
		

Crossrefs

Columns give truncated versions of A001399 (k = 2), A034337 (k = 3), A034338 (k = 4), A034339 (k = 5), A034340 (k = 6), A034341 (k = 7), A034342 (k = 8), and A034343 (? main diagonal).

Programs

  • Maple
    # We illustrate how to get a g.f. for column k in Maple when k is small.
    with(GroupTheory);
    G := ProjectiveGeneralLinearGroup(4, 2);
    GroupOrder(G);
    # We get that the order is 20160.
    f:=CycleIndexPolynomial(G, [x||(1..20160)]);
    # We get
    # 1/20160*x1^15 + 1/192*x1^7*x2^4 + 1/96*x1^3*x2^6 + 1/16*x1^3*x2^2*x4^2 +
    # 1/18*x1^3*x3^4 + 1/6*x1*x2*x3^2*x6 + 1/8*x1*x2*x4^3 + 1/180*x3^5 + 2/7*x1*x7^2 +
    # 1/12*x3*x6^2 + 1/15*x5^3 + 2/15*x15
    # The only dummy variables that appear are x1, x2, x3, x4, x5, x6, x7, and x15.
    g:=subs(x1 = 1/(1 - y), subs(x2 = 1/(-y^2 + 1), subs(x3 = 1/(-y^3 + 1), subs(x4 = 1/(-y^4 + 1), subs(x5 = 1/(-y^5 + 1), subs(x6 = 1/(-y^6 + 1), subs(x7 = 1/(-y^7 + 1), subs(x15 = 1/(-y^15 + 1), f))))))));
    # Then we take a Taylor expansion of the above g.f.
    taylor(g,y=0,50);
    # We get a Taylor expansion for column k = 4 (i.e., A034338).
    # Petros Hadjicostas, Sep 30 2019
  • Sage
    # Fripertinger's method to find the g.f. of column k for small k:
    def A076832col(k, length):
        G = PSL(k, GF(2))
        D = G.cycle_index()
        f = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives A034338:
    print(A076832col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Extensions

Revised by N. J. A. Sloane, Mar 01 2004

A034358 Number of binary [ n,4 ] codes.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 43, 106, 240, 516, 1060, 2108, 4064, 7641, 14036, 25253, 44560, 77245, 131658, 220883, 365027, 594674, 955649, 1515908, 2374875, 3676632, 5627587, 8520689, 12767557, 18941641, 27834607, 40530902, 58503994, 83741461, 118904892, 167534794, 234309554, 325373538, 448747606
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=4 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034345.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A076831 or A034356 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 (this sequence) gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Extensions

More terms from Petros Hadjicostas, Oct 07 2019

A034357 Number of binary [ n,3 ] codes.

Original entry on oeis.org

0, 0, 1, 4, 10, 22, 43, 77, 131, 213, 333, 507, 751, 1088, 1546, 2159, 2967, 4023, 5384, 7122, 9322, 12081, 15512, 19752, 24950, 31283, 38953, 48188, 59244, 72419, 88037, 106469, 128129, 153476, 183019, 217331, 257033
Offset: 1

Views

Author

Keywords

Comments

Also, a(n) is the number of orbits of C_2^3 subgroups of C_2^n under automorphisms of C_2^n. Also, a(n) is the number of faithful representations of C_2^3 of dimension n up to equivalence by automorphisms of (C_2^3). - Andrew Rupinski, Jan 20 2011

Crossrefs

Column k=3 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034344.

Formula

G.f.: (-x^15+2*x^14-x^13+x^12+x^9-x^7+x^4+x^3)/((1-x)^3*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^7)).

A034359 Number of binary [ n,5 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 23, 77, 240, 705, 1988, 5468, 14724, 39006, 101818, 261924, 663748, 1655781, 4062110, 9793065, 23186825, 53896597, 122975627, 275449464, 605794093, 1308633243, 2777847319, 5797093774, 11900199553, 24042491094, 47833081481, 93765335118, 181200186060, 345389067067, 649704599010
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034346.

Extensions

More terms from Joerg Arndt, Oct 09 2019

A034360 Number of binary [ n,6 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 32, 131, 516, 1988, 7664, 29765, 117169, 467266, 1880517, 7588675, 30491836, 121191234, 473940269, 1816579108, 6806904522, 24897540538, 88831250408, 309108741706, 1049278764758, 3476233500031, 11246972937210, 35561409388625, 109967835029368, 332834886787933, 986732945823099
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=6 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034347.

Extensions

More terms from Joerg Arndt, Oct 09 2019

A034361 Number of binary [ n,7 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 8, 43, 213, 1060, 5468, 29765, 173035, 1074526, 7059804, 48235007, 336048291, 2345912476, 16193974418, 109563962854, 722594600193, 4631590699334, 28811338570224, 173868030213652
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

Column k=7 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034348.

A034362 Number of binary [ n,8 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 9, 56, 333, 2108, 14724, 117169, 1074526, 11249092, 130484439, 1612782351, 20497233072, 260975054461, 3273854883027, 40073904283055, 476142523109291, 5477680380616386, 60959857679340812
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

Column k=8 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034349.
Showing 1-10 of 15 results. Next