cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A076831 Triangle T(n,k) read by rows giving number of inequivalent binary linear [n,k] codes (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 16, 22, 16, 6, 1, 1, 7, 23, 43, 43, 23, 7, 1, 1, 8, 32, 77, 106, 77, 32, 8, 1, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 1, 11, 71, 333, 1060, 1988, 1988
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2002

Keywords

Comments

"The familiar appearance of the first few rows [...] provides a good example of the perils of too hasty extrapolation in mathematics." - Slepian.
The difference between this triangle and the one for which it can be so easily mistaken is A250002. - Tilman Piesk, Nov 10 2014.

Examples

			     k    0   1   2   3    4    5    6    7    8   9  10  11        sum
   n
   0      1                                                           1
   1      1   1                                                       2
   2      1   2   1                                                   4
   3      1   3   3   1                                               8
   4      1   4   6   4    1                                         16
   5      1   5  10  10    5    1                                    32
   6      1   6  16  22   16    6    1                               68
   7      1   7  23  43   43   23    7    1                         148
   8      1   8  32  77  106   77   32    8    1                    342
   9      1   9  43 131  240  240  131   43    9   1                848
  10      1  10  56 213  516  705  516  213   56  10   1           2297
  11      1  11  71 333 1060 1988 1988 1060  333  71  11   1       6928
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint No. 1693, Tech. Hochschule Darmstadt, 1994

Crossrefs

Cf. A006116, A022166, A076766 (row sums).
A034356 gives same table but with the k=0 column omitted.
Columns include A000012 (k=0), A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. (See also some of the links above.)
(End)

A034363 Triangle of number of linear [ n,k ] ternary codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 8, 4, 1, 1, 8, 19, 15, 5, 1, 1, 10, 39, 50, 24, 6, 1, 1, 14, 78, 168, 118, 37, 7, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A034374 Triangle of number of indecomposable projective linear [ n,k ] GF(5) codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 10, 7, 1, 0, 0, 21, 46, 10, 1, 0, 0, 42, 436, 193, 17, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A014631 Numbers in order in which they appear in Pascal's triangle.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 10, 15, 20, 7, 21, 35, 8, 28, 56, 70, 9, 36, 84, 126, 45, 120, 210, 252, 11, 55, 165, 330, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 105, 455, 1365, 5005, 6435, 16, 560, 1820, 4368, 8008, 11440
Offset: 1

Views

Author

Keywords

Comments

A permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014
In Pascal's triangle a(n) occurs the first time in row A265912(n). - Reinhard Zumkeller, Dec 18 2015

Crossrefs

Cf. A034868, A119629 (inverse), A265912.

Programs

  • Haskell
    import Data.List (nub)
    a014631 n = a014631_list !! (n-1)
    a014631_list = 1 : (nub $ concatMap tail a034868_tabf)
    -- Reinhard Zumkeller, Dec 19 2015
    
  • Mathematica
    lst = {1}; t = Flatten[Table[Binomial[n, m], {n, 16}, {m, Floor[n/2]}]]; Do[ If[ !MemberQ[lst, t[[n]]], AppendTo[lst, t[[n]] ]], {n, Length@t}]; lst (* Robert G. Wilson v *)
    DeleteDuplicates[Flatten[Table[Binomial[n,m],{n,20},{m,0,Floor[n/2]}]]] (* Harvey P. Dale, Apr 08 2013 *)
  • Python
    from itertools import count, islice
    def A014631_gen(): # generator of terms
        s, c =(1,), set()
        for i in count(0):
            for d in s:
                if d not in c:
                    yield d
                    c.add(d)
            s=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ())
    A014631_list = list(islice(A014631_gen(),30)) # Chai Wah Wu, Oct 17 2023

Extensions

More terms from Erich Friedman
Offset changed by Reinhard Zumkeller, Dec 18 2015

A034198 Number of binary codes (not necessarily linear) of length n with 3 words.

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 23, 32, 43, 56, 71, 89, 109, 132, 158, 187, 219, 255, 294, 337, 384, 435, 490, 550, 614, 683, 757, 836, 920, 1010, 1105, 1206, 1313, 1426, 1545, 1671, 1803, 1942, 2088, 2241, 2401, 2569, 2744, 2927, 3118, 3317, 3524, 3740
Offset: 1

Views

Author

Keywords

Comments

Number of distinct triangles on vertices of n-dimensional cube.
Also, a(n) is the number of orbits of C_2^2 subgroups of C_2^n under automorphisms of C_2^n.
Also, a(n) is the number of faithful representations of C_2^2 of dimension n up to equivalence by automorphisms of (C_2^2).
Also, a([n/2]) is equal to the number of partitions mu such that there exists a C_2^2 subgroup G of S_n such that the i^th largest (nontrivial) product of 2-cycles in G consists of mu_i 2-cycles (see below example). - John M. Campbell, Jan 22 2016

Examples

			Let t denote the trivial representation and u_1, u_2, u_3 the three nontrivial irreducible representations of C_2^2 (so the u_i are all equivalent up to automorphisms of C_2^2). Then the a(4) = 6 faithful representations of dimension 4 are:
  2t+u_1+u_2; t+2u_1+u_2; t+u_1+u_2+u_3;
  3u_1+u_2;   2u_1+2u_2;  2u_1+u_2+u_3.
From _John M. Campbell_, Jan 22 2016: (Start)
Letting n=8, there are a([n/2])=a(4)=6 partitions mu such that there exists a Klein four-subgroup G of S_n such that the i^th largest (nontrivial) product of 2-cycles in G consists of mu_i 2-cycles, as indicated below:
{2, 1, 1} <-> {(12)(34), (12), (34), id}
{3, 2, 1} <-> {(12)(34)(56), (34)(56), (12), id}
{2, 2, 2} <-> {(12)(34), (34)(56), (56)(12), id}
{4, 3, 1} <-> {(12)(34)(56)(78), (34)(56)(78), (12), id}
{4, 2, 2} <-> {(12)(34)(56)(78), (56)(78), (12)(34), id}
{3, 3, 2} <-> {(12)(34)(56), (34)(56)(78), (12)(78), id}
(End)
		

Crossrefs

Cf. A034188.
Column k=2 of both A034356 and A076831 (which are the same except for column k=0).

Programs

Formula

a(n) = floor(n*(2*n^2 + 21*n - 6)/72).
G.f.: (-x^5 + x^3 + x^2)/((1 - x)^2*(1 - x^2)*(1 - x^3)) = 1/((1 - x)^2*(1 - x^2)*(1 - x^3)) - 1/(1 - x)^2.
a(1) = 0, a(2) = 1, a(3) = 3, a(4) = 6, a(5) = 10, a(6) = 16, a(7) = 23, and a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7) for n >= 8. [Harvey P. Dale, Dec 25 2011]
From Irena Swanson, Feb 11 2024: (Start)
The roots of the characteristic polynomial corresponding to the above recurrence are 1, 1, 1, 1, -1, -1/2 - sqrt(-3)/2 and -1/2 + sqrt(-3)/2. The corresponding closed form is:
a(n) = -25/144 - n/12 + 7n^2/24 + n^3/36 + (-1)^n/16 + (1/18 + sqrt(-3)/54)(-1/2 - sqrt(-3)/2)^n + (1/18 - sqrt(-3)/54)(-1/2 + sqrt(-3)/2)^n for n >= 1. (End)

Extensions

Additional comments from Max Alekseyev, Jul 09 2006
Additional comments from Andrew Rupinski, Jan 20 2010

A034328 Triangle read by rows: T(n,k) = number of loopless, regular k X n-matrix matroids of dimension k (or n-matroids of rank k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 12, 11, 5, 1, 1, 7, 20, 26, 17, 6, 1, 1, 9, 33, 58, 52, 25, 7, 1, 1, 11, 52, 121, 146, 95, 35, 8, 1, 1, 13, 78, 240, 388, 334, 162, 47, 9, 1, 1, 15, 113, 454, 975, 1123, 710, 262, 61, 10, 1, 1, 18, 163, 835, 2365
Offset: 0

Views

Author

Keywords

Examples

			1; 1,1; 1,2,1; 1,3,3,1; 1,4,6,4,1; 1,6,12,11,5,1; 1,7,20,26,17,6,1; ...
		

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

Extensions

Description corrected by Harald Fripertinger, Nov 14 2007

A034358 Number of binary [ n,4 ] codes.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 43, 106, 240, 516, 1060, 2108, 4064, 7641, 14036, 25253, 44560, 77245, 131658, 220883, 365027, 594674, 955649, 1515908, 2374875, 3676632, 5627587, 8520689, 12767557, 18941641, 27834607, 40530902, 58503994, 83741461, 118904892, 167534794, 234309554, 325373538, 448747606
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=4 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034345.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A076831 or A034356 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 (this sequence) gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Extensions

More terms from Petros Hadjicostas, Oct 07 2019

A034357 Number of binary [ n,3 ] codes.

Original entry on oeis.org

0, 0, 1, 4, 10, 22, 43, 77, 131, 213, 333, 507, 751, 1088, 1546, 2159, 2967, 4023, 5384, 7122, 9322, 12081, 15512, 19752, 24950, 31283, 38953, 48188, 59244, 72419, 88037, 106469, 128129, 153476, 183019, 217331, 257033
Offset: 1

Views

Author

Keywords

Comments

Also, a(n) is the number of orbits of C_2^3 subgroups of C_2^n under automorphisms of C_2^n. Also, a(n) is the number of faithful representations of C_2^3 of dimension n up to equivalence by automorphisms of (C_2^3). - Andrew Rupinski, Jan 20 2011

Crossrefs

Column k=3 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034344.

Formula

G.f.: (-x^15+2*x^14-x^13+x^12+x^9-x^7+x^4+x^3)/((1-x)^3*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^7)).

A034359 Number of binary [ n,5 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 23, 77, 240, 705, 1988, 5468, 14724, 39006, 101818, 261924, 663748, 1655781, 4062110, 9793065, 23186825, 53896597, 122975627, 275449464, 605794093, 1308633243, 2777847319, 5797093774, 11900199553, 24042491094, 47833081481, 93765335118, 181200186060, 345389067067, 649704599010
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034346.

Extensions

More terms from Joerg Arndt, Oct 09 2019

A034360 Number of binary [ n,6 ] codes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 32, 131, 516, 1988, 7664, 29765, 117169, 467266, 1880517, 7588675, 30491836, 121191234, 473940269, 1816579108, 6806904522, 24897540538, 88831250408, 309108741706, 1049278764758, 3476233500031, 11246972937210, 35561409388625, 109967835029368, 332834886787933, 986732945823099
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=6 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034347.

Extensions

More terms from Joerg Arndt, Oct 09 2019
Showing 1-10 of 22 results. Next