cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A265912 Smallest m such that A014631(n) occurs in row m of Pascal's triangle.

Original entry on oeis.org

0, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 18 2015

Keywords

Comments

Each n occurs A126257(n) times consecutively.

Examples

			First occurrences of z(n)=A014631(n) in the left part of Pascal's triangle, repetitions marked:
.   0: z(1)                                       [1]
.   1: *z(1)                                      [1]
.   2: *z(1)  z(2)                                [1,2]
.   3: *z(1)  z(3)                                [1,3]
.   4: *z(1)  z(4)  z(5)                          [1,4,6]
.   5: *z(1)  z(6)  z(7)                          [1,5,10]
.   6: *z(1) *z(5)  z(8)  z(9)                    [1,6,15,20]
.   7: *z(1)  z(10) z(11) z(12)                   [1,7,21,35]
.   8: *z(1)  z(13) z(14) z(15) z(16)             [1,8,28,56,70]
.   9: *z(1)  z(17) z(18) z(19) z(20)             [1,9,36,84,126]
.  10: *z(1) *z(7)  z(21) z(22) z(23) z(24)       [1,10,45,120,210,252]
.  11: *z(1)  z(25) z(26) z(27) z(28) z(29)       [1,11,55,165,330,462]
.  12: *z(1)  z(30) z(31) z(32) z(33) z(34) z(35) [1,12,66,220,495,792,924]
---------------------------------------------------------------------------
.    n: 1  2  3  4  5  6   7   8   9  10  11  12  13  14  15  16  17  18
. z(n): 1  2  3  4  6  5  10  15  20   7  21  35   8  28  56  70   9  36
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndex); import Data.Maybe (fromJust)
    a265912 = fromJust . (flip findIndex a007318_tabl) . elem . a014631
    
  • Python
    from itertools import count, islice
    def A265912_gen(): # generator of terms
        s, c =(1,), set()
        for i in count(0):
            for d in s:
                if d not in c:
                    yield i
                    c.add(d)
            s=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ())
    A265912_list = list(islice(A265912_gen(),30)) # Chai Wah Wu, Oct 17 2023

A119629 Inverse permutation to sequence A014631.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 10, 13, 17, 7, 25, 30, 36, 42, 8, 54, 61, 69, 78, 9, 11, 104, 115, 126, 138, 150, 163, 14, 189, 203, 218, 233, 249, 265, 12, 18, 315, 333, 352, 371, 391, 411, 432, 453, 21, 496, 519, 542, 566, 590, 615, 640, 666, 692, 26, 15, 771, 799, 828, 857, 887
Offset: 1

Views

Author

Leroy Quet, Jun 08 2006

Keywords

Crossrefs

Cf. A014631.
Cf. A265912.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a119629 = (+ 1) . fromJust . (`elemIndex` a014631_list)
    -- Reinhard Zumkeller, Dec 18 2015
  • Mathematica
    lst = {1}; t = Flatten[Table[Binomial[n, m], {n, 16}, {m, Floor[n/2]}]]; Do[ If[ !MemberQ[lst, t[[n]]], AppendTo[lst, t[[n]] ]], {n, Length@t}]; Flatten@Table[ Position[lst, n], {n, 61}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jun 08 2006

A119741 A008279, with the first and last of each row removed.

Original entry on oeis.org

2, 3, 6, 4, 12, 24, 5, 20, 60, 120, 6, 30, 120, 360, 720, 7, 42, 210, 840, 2520, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800
Offset: 2

Views

Author

Lekraj Beedassy, Jul 29 2006

Keywords

Comments

Triangle read by rows: T(n,k) (n>=2, k=1..n-1) is the number of topologies t on n points having exactly k+2 open sets such that t contains exactly one open set of size m for each m in {0,1,2,...,s,n} where s is the size of the largest proper open set in t. - N. J. A. Sloane, Jan 29 2016 [clarified by Geoffrey Critzer, Feb 19 2017]

Examples

			Triangle begins:
   2;
   3,  6;
   4, 12,  24;
   5, 20,  60,  120;
   6, 30, 120,  360,   720;
   7, 42, 210,  840,  2520,   5040;
   8, 56, 336, 1680,  6720,  20160,  40320;
   9, 72, 504, 3024, 15120,  60480, 181440,  362880;
  10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800;
  ...
		

Crossrefs

Row sums give A038156.
Triangles in this series: A268216, A268217, A268221, A268222, A268223.

Programs

  • Maple
    T:= (n, k)-> n!/(n-k)!:
    seq(seq(T(n,k), k=1..n-1), n=2..11);  # Alois P. Heinz, Aug 22 2025
  • Mathematica
    Table[FactorialPower[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 21 2020 *)

Formula

a(n) = (A003057(n))!/(A004736(n))! = (A002260(n))!*(A014410(n)).
T(n,k) = A173333(n+1,n-k+1), 1<=k<=n. - Reinhard Zumkeller, Feb 19 2010

Extensions

Edited by Don Reble, Aug 01 2006

A132311 Triangle read by rows: T(n,k) is the number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 6, 28, 28, 6, 1, 1, 11, 117, 318, 117, 11, 1, 1, 14, 388, 3344, 3344, 388, 14, 1, 1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1, 1, 29, 8270, 2031198, 53679222, 53679222, 2031198, 8270, 29, 1, 1, 42, 40243, 74464383, 19465193506, 147286801214, 19465193506, 74464383, 40243, 42, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 18 2007

Keywords

Comments

T(n,k) = T(n,n-k).
T(n,0) = 1 for n>0.
A000041(n) - 1 <= T(n,1) <= A000041(n) for n>1.

Examples

			A007318(4,2) = A007318(6,1) = 6: T(4,2) = #{3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1} = 7, but T(6,1) = A000041(6) = 11.
Triangle T(n,k) begins:
  0;
  1,  1;
  1,  1,    1;
  1,  2,    2,     1;
  1,  4,    7,     4,      1;
  1,  6,   28,    28,      6,     1;
  1, 11,  117,   318,    117,    11,    1;
  1, 14,  388,  3344,   3344,   388,   14,  1;
  1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1;
  ...
		

Crossrefs

A132312 Triangle read by rows: T(n,k) = number of partitions of binomial(n,k) into distinct parts of the first n rows of Pascal's triangle, 0<=k<=n.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 4, 7, 6, 7, 4, 1, 1, 4, 11, 14, 14, 11, 4, 1, 1, 5, 28, 57, 56, 57, 28, 5, 1, 1, 7, 73, 273, 434, 434, 273, 73, 7, 1, 1, 10, 189, 1411, 3479, 3980, 3479, 1411, 189, 10, 1, 1, 11, 300, 4138, 16293, 26555, 26555, 16293, 4138, 300, 11, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 18 2007

Keywords

Comments

T(n,k) = T(n,n-k);
T(n,0) = 1 for n>0;
A000009(n) - 1 <= T(n,1) <= A000009(n) for n>1;

Examples

			T(9,1) = A000009(9)-1 = 7;
A007318(5,2) = A007318(10,1) = 10:
T(5,2) = #{6+4, 6+3+1, 4+3+2+1} = 3,
but T(10,1) = A000009(10) = 10.
		

Crossrefs

Programs

  • Mathematica
    T[n_] := T[n] = Table[Binomial[m, k], {m, 0, n-1}, {k, 0, m}] // Flatten // Union;
    T[n_, k_] /; k <= n/2 := T[n, k] = Select[ IntegerPartitions[ Binomial[n, k], Length[T[n]], T[n]], Length[#] == Length[Union[#]]&] // Length;
    T[n_, k_] /; k > n/2 := T[n, k] = T[n, n-k];
    Table[Print["T[", n, ",", k, "] = ", T[n, k]]; T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2020 *)

A046202 Distinct numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 20, 30, 60, 7, 42, 105, 140, 8, 56, 168, 280, 9, 72, 252, 504, 630, 10, 90, 360, 840, 1260, 11, 110, 495, 1320, 2310, 2772, 132, 660, 1980, 3960, 5544, 13, 156, 858, 2860, 6435, 10296, 12012, 14, 182, 1092, 4004, 10010, 18018, 24024, 15
Offset: 1

Views

Author

Keywords

Comments

Numbers in the order in which they appear in Leibniz's Harmonic Triangle (A003506). This sequence is a permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Denominator[n!*k!/(n + k + 1)!]; DeleteDuplicates@ Flatten@ Table[t[n - k, k], {n, 0, 14}, {k, 0, n/2}] (* Robert G. Wilson v, Jun 12 2014 *)

Extensions

More terms from James Sellers, Dec 13 1999

A014764 Squares of distinct elements in Pascal triangle.

Original entry on oeis.org

1, 4, 9, 16, 36, 25, 100, 225, 400, 49, 441, 1225, 64, 784, 3136, 4900, 81, 1296, 7056, 15876, 2025, 14400, 44100, 63504, 121, 3025, 27225, 108900, 213444, 144, 4356, 48400, 245025, 627264, 853776, 169, 6084, 81796, 511225, 1656369, 2944656, 196
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014631.

Formula

a(n) = A014631(n)^2. - Sean A. Irvine, Nov 19 2018

Extensions

More terms from James Sellers
Offset changed by Sean A. Irvine, Nov 19 2018
Showing 1-7 of 7 results.