cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A268216 Duplicate of A119741.

Original entry on oeis.org

2, 3, 6, 4, 12, 24, 5, 20, 60, 120, 6, 30, 120, 360, 720, 7, 42, 210, 840, 2520, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800
Offset: 2

Views

Author

Keywords

A173333 Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 19 2010

Keywords

Comments

From Wolfdieter Lang, Jun 27 2012: (Start)
T(n-1,k), k=1,...,n-1, gives the number of representative necklaces with n beads (C_N symmetry) of n+1-k distinct colors, say c[1],c[2],...,c[n-k+1], corresponding to the color signature determined by the partition k,1^(n-k) of n. The representative necklaces have k beads of color c[1]. E.g., n=4, k=2: partition 2,1,1, color signature (parts as exponents) c[1]c[1]c[2]c[3], 3=T(3,2) necklaces (write j for color c[j]): cyclic(1123), cyclic(1132) and cyclic(1213). See A212359 for the numbers for general partitions or color signatures. (End)

Examples

			Triangle starts:
n\k      1       2      3      4     5    6   7  8  9 10 ...
1        1
2        2       1
3        6       3      1
4       24      12      4      1
5      120      60     20      5     1
6      720     360    120     30     6    1
7     5040    2520    840    210    42    7   1
8    40320   20160   6720   1680   336   56   8  1
9   362880  181440  60480  15120  3024  504  72  9  1
10 3628800 1814400 604800 151200 30240 5040 720 90 10  1
... - _Wolfdieter Lang_, Jun 27 2012
		

Crossrefs

Row sums give A002627.
Central terms give A006963:
T(2*n-1,n) = A006963(n+1).
T(2*n,n) = A001813(n).
T(2*n,n+1) = A001761(n).
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) = A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) = A162995(n,k).
T(n,1) = A000142(n).
T(n,2) = A001710(n) for n>1.
T(n,3) = A001715(n) for n>2.
T(n,4) = A001720(n) for n>3.
T(n,5) = A001725(n) for n>4.
T(n,6) = A001730(n) for n>5.
T(n,7) = A049388(n-7) for n>6.
T(n,8) = A049389(n-8) for n>7.
T(n,9) = A049398(n-9) for n>8.
T(n,10) = A051431(n) for n>9.
T(n,n-7) = A159083(n+1) for n>7.
T(n,n-6) = A053625(n+1) for n>6.
T(n,n-5) = A052787(n) for n>5.
T(n,n-4) = A052762(n) for n>4.
T(n,n-3) = A007531(n) for n>3.
T(n,n-2) = A002378(n-1) for n>2.
T(n,n-1) = A000027(n) for n>1.
T(n,n) = A000012(n).

Programs

  • Haskell
    a173333 n k = a173333_tabl !! (n-1) !! (k-1)
    a173333_row n = a173333_tabl !! (n-1)
    a173333_tabl = map fst $ iterate f ([1], 2)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

E.g.f.: (exp(x*y) - 1)/(x*(1 - y)). - Olivier Gérard, Jul 07 2011
T(n,k) = A094587(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

A038156 a(n) = n! * Sum_{k=1..n-1} 1/k!.

Original entry on oeis.org

0, 0, 2, 9, 40, 205, 1236, 8659, 69280, 623529, 6235300, 68588311, 823059744, 10699776685, 149796873604, 2246953104075, 35951249665216, 611171244308689, 11001082397556420, 209020565553571999, 4180411311071440000, 87788637532500240021, 1931350025715005280484
Offset: 0

Views

Author

Keywords

Comments

Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
Also number of operations needed to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2 (see answer to exercise 5). - Hugo Pfoertner, Jan 24 2003
For n>1, the number of possible ballots where there are n candidates and voters may identify their top m most preferred ones, where 0 < m < n. - Shaye Horwitz, Jun 28 2011
For n > 1, a(n) is the expected number of comparisons required to sort a random list of n distinct elements using the "bogosort" algorithm. - Andrew Slattery, Jun 02 2022
The number of permutations of all proper nonempty subsets of an n element set. - P. Christopher Staecker, May 09 2024

Examples

			a(2) = floor((2.718... - 1)*2) - 1 = 3 - 1 = 2,
a(3) = floor((2.718... - 1)*6) - 1 = 10 - 1 = 9.
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 2. Generating All Tuples and Permutations, Addison-Wesley, 2005.

Crossrefs

Programs

Formula

a(n) = floor((e-1)*n!) - 1.
a(0) = a(1) = 0, a(n) = n*(a(n-1) + 1) for n>1. - Philippe Deléham, Oct 16 2009
E.g.f.: (exp(x) - 1)*x/(1 - x). - Ilya Gutkovskiy, Jan 26 2017
a(n) = A002627(n)-1, n>=1. - R. J. Mathar, Jan 03 2018
a(n) = A000522(n)-n!-1, n>=1. - P. Christopher Staecker, May 09 2024

Extensions

a(28) ff. corrected by Georg Fischer, Apr 11 2020

A268217 Triangle read by rows: T(n,k) (n>=3, k=3..n) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,2,3,4,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

3, 6, 12, 10, 30, 60, 15, 60, 180, 360, 21, 105, 420, 1260, 2520, 28, 168, 840, 3360, 10080, 20160, 36, 252, 1512, 7560, 30240, 90720, 181440, 45, 360, 2520, 15120, 75600, 302400, 907200, 1814400, 55, 495, 3960, 27720, 166320, 831600, 3326400, 9979200, 19958400
Offset: 3

Views

Author

N. J. A. Sloane, Jan 29 2016

Keywords

Comments

When two leading 0's are added and last element repeated, rows give the coefficients of the path polynomials of the complete graph K_n. - Eric W. Weisstein, Jun 04 2017

Examples

			Triangle begins:
   3;
   6,  12;
  10,  30,   60;
  15,  60,  180,   360;
  21, 105,  420,  1260,   2520;
  28, 168,  840,  3360,  10080,  20160;
  36, 252, 1512,  7560,  30240,  90720,  181440;
  45, 360, 2520, 15120,  75600, 302400,  907200, 1814400;
  ...
		

Crossrefs

Row sums give A038158.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 2; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0, n - i - 1}], {n, 2, 9}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)
    CoefficientList[Table[-(1/2) (n - 1) n x^(n - 2) (Gamma[n - 1] - E^(1/x) Gamma[n - 1, 1/x]), {n, 3, 10}] // FunctionExpand, x] // Flatten (* Eric W. Weisstein, Jun 04 2017 *)

Extensions

Title clarified by Geoffrey Critzer, Feb 19 2017
Corrected and extended by Andrew Howroyd, Aug 09 2025

A268221 Triangle read by rows: T(n,k) (n>=4, k=3..n-1) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,3,4,5,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

4, 10, 20, 20, 60, 120, 35, 140, 420, 840, 56, 280, 1120, 3360, 6720, 84, 504, 2520, 10080, 30240, 60480, 120, 840, 5040, 25200, 100800, 302400, 604800, 165, 1320, 9240, 55440, 277200, 1108800, 3326400, 6652800, 220, 1980, 15840, 110880, 665280, 3326400, 13305600, 39916800, 79833600
Offset: 4

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    4;
   10,  20;
   20,  60,  120;
   35, 140,  420,   840;
   56, 280, 1120,  3360,   6720;
   84, 504, 2520, 10080,  30240,  60480;
  120, 840, 5040, 25200, 100800, 302400, 604800;
  ...
		

Crossrefs

Row sums give A268218.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 3; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0, n - i - 1}], {n, 2, 12}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017

A268222 Triangle read by rows: T(n,k) (n>=5, k=3..n-2) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,4,5,6,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

5, 15, 30, 35, 105, 210, 70, 280, 840, 1680, 126, 630, 2520, 7560, 15120, 210, 1260, 6300, 25200, 75600, 151200, 330, 2310, 13860, 69300, 277200, 831600, 1663200, 495, 3960, 27720, 166320, 831600, 3326400, 9979200, 19958400, 715, 6435, 51480, 360360, 2162160, 10810800, 43243200, 129729600, 259459200
Offset: 5

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    5;
   15,   30;
   35,  105,  210;
   70,  280,  840,  1680;
  126,  630, 2520,  7560, 15120;
  210, 1260, 6300, 25200, 75600, 151200;
...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 4; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 12}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017
Missing a(19) inserted and a(41) onwards from Andrew Howroyd, Aug 10 2025

A268223 Triangle read by rows: T(n,k) (n>=6, k=3..n-3) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,5,6,7,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

6, 21, 42, 56, 168, 336, 126, 504, 1512, 3024, 252, 1260, 5040, 15120, 30240, 462, 2772, 13860, 55440, 166320, 332640, 792, 5544, 33264, 166320, 665280, 1995840, 3991680, 1287, 10296, 72072, 432432, 2162160, 8648640, 25945920, 51891840
Offset: 6

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    6;
   21,   42;
   56,  168,  336;
  126,  504, 1512,  3024;
  252, 1260, 5040, 15120, 30240;
  ...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.

Programs

  • Mathematica
    i = 5; Table[ Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 13}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017

A282507 Triangular array read by rows. T(n,k) is the number of chain topologies on an n-set with exactly k open sets where one of the open sets is a single point set, n >= 2, 3 <= k <= n+1.

Original entry on oeis.org

2, 3, 6, 4, 24, 24, 5, 70, 180, 120, 6, 180, 900, 1440, 720, 7, 434, 3780, 10920, 12600, 5040, 8, 1008, 14448, 67200, 134400, 120960, 40320, 9, 2286, 52164, 367416, 1134000, 1723680, 1270080, 362880, 10, 5100, 181500, 1864800, 8341200, 19051200, 23284800, 14515200, 3628800
Offset: 2

Views

Author

Geoffrey Critzer, Feb 16 2017

Keywords

Comments

A chain topology is a topology that can be totally ordered by inclusion.

Examples

			Triangle begins:
  2;
  3,   6;
  4,  24,  24;
  5,  70, 180,  120;
  6, 180, 900, 1440, 720;
  ...
		

Crossrefs

Cf. A119741 where the topologies are further restricted.
Row sums = A052882.
Cf. A019538.

Programs

  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &, Drop[Range[0, nn]! CoefficientList[Series[x/(1 - y (Exp[x] - 1)), {x, 0, nn}], {x, y}], 2]] // Grid

Formula

E.g.f.: y^2*x/(1 - y*(exp(x) - 1)). Generally for chain topologies where the smallest nonempty open set has size m: (x^m/m!) * y^2/(1 - y*(exp(x) - 1)).
A conjecture I made to Loic Foissy, who replied: sequence T(n,k) counts surjective maps [n]->> [k] such that k is obtained exactly once, whereas sequence A019538 b(n,k) counts surjective maps [n]->> [k]. To construct an element for T(n,k), you may choose the element of [n] giving k (n choices), then a surjection from the n-1 remaining elements to [k-1] (b(n-1,k-1) choices). This gives T(n,k) = n * b(n-1,k-1), if k,n>1. - Tom Copeland, Nov 10 2023 [So it is now a theorem, not a conjecture, right? - N. J. A. Sloane, Dec 23 2023]
Showing 1-8 of 8 results.