cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A119741 A008279, with the first and last of each row removed.

Original entry on oeis.org

2, 3, 6, 4, 12, 24, 5, 20, 60, 120, 6, 30, 120, 360, 720, 7, 42, 210, 840, 2520, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800
Offset: 2

Views

Author

Lekraj Beedassy, Jul 29 2006

Keywords

Comments

Triangle read by rows: T(n,k) (n>=2, k=1..n-1) is the number of topologies t on n points having exactly k+2 open sets such that t contains exactly one open set of size m for each m in {0,1,2,...,s,n} where s is the size of the largest proper open set in t. - N. J. A. Sloane, Jan 29 2016 [clarified by Geoffrey Critzer, Feb 19 2017]

Examples

			Triangle begins:
   2;
   3,  6;
   4, 12,  24;
   5, 20,  60,  120;
   6, 30, 120,  360,   720;
   7, 42, 210,  840,  2520,   5040;
   8, 56, 336, 1680,  6720,  20160,  40320;
   9, 72, 504, 3024, 15120,  60480, 181440,  362880;
  10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800;
  ...
		

Crossrefs

Row sums give A038156.
Triangles in this series: A268216, A268217, A268221, A268222, A268223.

Programs

  • Maple
    T:= (n, k)-> n!/(n-k)!:
    seq(seq(T(n,k), k=1..n-1), n=2..11);  # Alois P. Heinz, Aug 22 2025
  • Mathematica
    Table[FactorialPower[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 21 2020 *)

Formula

a(n) = (A003057(n))!/(A004736(n))! = (A002260(n))!*(A014410(n)).
T(n,k) = A173333(n+1,n-k+1), 1<=k<=n. - Reinhard Zumkeller, Feb 19 2010

Extensions

Edited by Don Reble, Aug 01 2006

A268221 Triangle read by rows: T(n,k) (n>=4, k=3..n-1) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,3,4,5,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

4, 10, 20, 20, 60, 120, 35, 140, 420, 840, 56, 280, 1120, 3360, 6720, 84, 504, 2520, 10080, 30240, 60480, 120, 840, 5040, 25200, 100800, 302400, 604800, 165, 1320, 9240, 55440, 277200, 1108800, 3326400, 6652800, 220, 1980, 15840, 110880, 665280, 3326400, 13305600, 39916800, 79833600
Offset: 4

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    4;
   10,  20;
   20,  60,  120;
   35, 140,  420,   840;
   56, 280, 1120,  3360,   6720;
   84, 504, 2520, 10080,  30240,  60480;
  120, 840, 5040, 25200, 100800, 302400, 604800;
  ...
		

Crossrefs

Row sums give A268218.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 3; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0, n - i - 1}], {n, 2, 12}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017

A268222 Triangle read by rows: T(n,k) (n>=5, k=3..n-2) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,4,5,6,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

5, 15, 30, 35, 105, 210, 70, 280, 840, 1680, 126, 630, 2520, 7560, 15120, 210, 1260, 6300, 25200, 75600, 151200, 330, 2310, 13860, 69300, 277200, 831600, 1663200, 495, 3960, 27720, 166320, 831600, 3326400, 9979200, 19958400, 715, 6435, 51480, 360360, 2162160, 10810800, 43243200, 129729600, 259459200
Offset: 5

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    5;
   15,   30;
   35,  105,  210;
   70,  280,  840,  1680;
  126,  630, 2520,  7560, 15120;
  210, 1260, 6300, 25200, 75600, 151200;
...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 4; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 12}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017
Missing a(19) inserted and a(41) onwards from Andrew Howroyd, Aug 10 2025

A268223 Triangle read by rows: T(n,k) (n>=6, k=3..n-3) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,5,6,7,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

6, 21, 42, 56, 168, 336, 126, 504, 1512, 3024, 252, 1260, 5040, 15120, 30240, 462, 2772, 13860, 55440, 166320, 332640, 792, 5544, 33264, 166320, 665280, 1995840, 3991680, 1287, 10296, 72072, 432432, 2162160, 8648640, 25945920, 51891840
Offset: 6

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    6;
   21,   42;
   56,  168,  336;
  126,  504, 1512,  3024;
  252, 1260, 5040, 15120, 30240;
  ...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.

Programs

  • Mathematica
    i = 5; Table[ Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 13}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017

A038158 a(n) = (n!/2)*Sum(1/k!, k=1..n-2).

Original entry on oeis.org

0, 0, 0, 3, 18, 100, 615, 4326, 34636, 311760, 3117645, 34294150, 411529866, 5349888336, 74898436795, 1123476552030, 17975624832600, 305585622154336, 5500541198778201, 104510282776785990, 2090205655535719990, 43894318766250120000
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A268217.
Cf. A038157.

Programs

  • PARI
    a(n) = (n!/2)*sum(k=1, n-2, 1/k!); \\ Michel Marcus, Jan 30 2016

Formula

a(n) = A038157(n) / 2. - Sean A. Irvine, Jan 09 2021
Showing 1-5 of 5 results.