cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A034333 Number of matroids: column 3 of A034328.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 20, 33, 52, 78, 113, 163
Offset: 0

Views

Author

Keywords

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

Cf. A034327-.

A034334 Number of matroids: column 4 of A034328.

Original entry on oeis.org

0, 0, 0, 1, 4, 11, 26, 58, 121, 240, 454, 835
Offset: 0

Views

Author

Keywords

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

Cf. A034327-.

A034335 Number of matroids: column 5 of A034328.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 17, 52, 146, 388, 975, 2365
Offset: 0

Views

Author

Keywords

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

Cf. A034327-.

A034336 Number of matroids: column 6 of A034328.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 25, 95, 334, 1123, 3621
Offset: 0

Views

Author

Keywords

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

Cf. A034327-.

A034356 Triangle read by rows giving T(n,k) = number of inequivalent linear [n,k] binary codes (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 16, 22, 16, 6, 1, 7, 23, 43, 43, 23, 7, 1, 8, 32, 77, 106, 77, 32, 8, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 11, 71, 333, 1060, 1988, 1988, 1060, 333, 71, 11, 1, 12, 89
Offset: 1

Views

Author

Keywords

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  4,   1;
  5, 10, 10,   5,  1;
  6, 16, 22,  16,  6,  1;
  7, 23, 43,  43, 23,  7, 1;
  8, 32, 77, 106, 77, 32, 8, 1;
  ...
		

Crossrefs

This is A076831 with the k=0 column omitted.
Columns include A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034356col(k, length):
        R = PowerSeriesRing(ZZ, 'x', default_prec=length)
        x = R.gen().O(length)
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034356col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=1: x/(1-x)^2.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. For some cases, see also the links above.
(End)

A034327 Triangle of numbers of connected regular (k X n)-matrix matroids of dimension k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 17, 24, 17, 5, 1, 1, 7, 29, 60, 60, 29, 7, 1, 1, 8, 47, 133, 192, 133, 47, 8, 1, 1, 10, 72, 279, 556, 556, 279, 72, 10, 1, 1, 12, 110, 556, 1514, 2108, 1514, 556, 110, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			The triangle begins:
  1;
  1;
  1, 1;
  1, 1, 1;
  1, 2, 2, 1;
  ...
		

References

  • Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).

Crossrefs

A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 68, 148, 342, 848, 2297, 6928, 24034, 98854, 503137, 3318732, 29708814, 374039266, 6739630253, 173801649708, 6356255181216, 326203517516704, 23294352980140884, 2301176047764925736, 313285408199180770635, 58638266023262502962716
Offset: 0

Views

Author

Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002

Keywords

Examples

			a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates.
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994.

Crossrefs

Row sums of triangle A076831. Cf. A034328, A055545.

Extensions

Edited by N. J. A. Sloane, Nov 01 2007, at the suggestion of Gordon Royle.

A174743 Partial sums of A076766.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 131, 279, 621, 1469, 3766, 10694, 34728, 133582, 636719, 3955451, 33664265, 407703531, 7147333784, 180948983492, 6537204164708, 332740721681412, 23627093701822296, 2324803141466748032, 315610211340647518667, 58953876234603150481383
Offset: 0

Views

Author

Jonathan Vos Post, Nov 30 2010

Keywords

Comments

Number of inequivalent binary linear codes of length <= n. Also the total number of nonisomorphic binary matroids on an k-set for all k <= n. The subsequence of primes is: 3, 7, 31, 131.

Examples

			a(14) = 1 + 2 + 4 + 8 + 16 + 32 + 68 + 148 + 342 + 848 + 2297 + 6928 + 24034 + 98854 + 503137 = 636719 is prime.
		

Crossrefs

Showing 1-8 of 8 results.