A015196 Sum of Gaussian binomial coefficients for q=10.
1, 2, 13, 224, 13435, 2266646, 1348019857, 2269339773068, 13484735901526279, 226960944509263279490, 13485189809930561625032701, 2269636415245291711513986785912, 1348523520252401463276762566348539123
Offset: 0
Keywords
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..60
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Crossrefs
Programs
-
Mathematica
Total/@Table[QBinomial[n, m, 10], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *) Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(10^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Formula
a(n) = 2*a(n-1)+(10^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 10^(n^2/4), where c = EllipticTheta[3,0,1/10]/QPochhammer[1/10,1/10] = 1.348524024616... if n is even and c = EllipticTheta[2,0,1/10]/QPochhammer[1/10,1/10] = 1.2763120346269... if n is odd. - Vaclav Kotesovec, Aug 21 2013