cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 81 results. Next

A135950 Matrix inverse of triangle A022166.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -8, 14, -7, 1, 64, -120, 70, -15, 1, -1024, 1984, -1240, 310, -31, 1, 32768, -64512, 41664, -11160, 1302, -63, 1, -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1, 268435456, -534773760, 353730560, -99486720, 12850368, -777240, 21590, -255, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2007

Keywords

Comments

A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.
The coefficient [x^k] of Product_{i=1..n} (x-2^(i-1)). - Roger L. Bagula, Mar 20 2009
Triangle T(n,k), 0 <= k <= n, read by rows given by (-1, 1-q, -q^2, q-q^3, -q^4, q^2-q^5, -q^6, q^3-q^7, -q^8, ...) DELTA (1, 0, q, 0, q^2, 0, q^3, 0, q^4, 0, ...) (for q = 2) = (-1, -1, -4, -6, -16, -28, -64, -120, -256, ...) DELTA (1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013
Reversed rows of triangle A158474. - Werner Schulte, Apr 06 2019
T(n,k) = Sum mu(0,U) where the sum is taken over the subspaces U of GF(2)^n having dimension n-k and mu is the Moebius function of the poset of all subspaces of GF(2)^n. - Geoffrey Critzer, Jun 02 2024

Examples

			Triangle begins:
         1;
        -1,       1;
         2,      -3,        1;
        -8,      14,       -7,      1;
        64,    -120,       70,    -15,      1;
     -1024,    1984,    -1240,    310,    -31,    1;
     32768,  -64512,    41664, -11160,   1302,  -63,    1;
  -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ...
		

Crossrefs

Cf. A022166, A006125, A028361, A127850, A135951 (central terms), A158474.

Programs

  • Mathematica
    max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
    Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* G. C. Greubel, Apr 15 2019 *)
  • PARI
    T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1]

Formula

Unsigned column 0 equals A006125(n) = 2^(n*(n-1)/2).
Unsigned column 1 equals A127850(n) = (2^n-1)*2^(n*(n-1)/2)/2^(n-1).
Row sums equal 0^n.
Unsigned row sums equal A028361(n) = Product_{k=0..n} (1+2^k).
T(n,k) = (-1)^(n-k) * A022166(n,k) * 2^binomial(n-k,2) for 0 <= k <= n. - Werner Schulte, Apr 06 2019 [corrected by Werner Schulte, Dec 27 2021]
Sum_{n>=0} Sum_{k=0..n} T(n,k)y^k*x^n/A005329(n) = e(y*x)/e(x) where e(x) = Sum_{n>=0} x^n/A005329(n). - Geoffrey Critzer, Jun 02 2024

A125812 q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.

Original entry on oeis.org

1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184, 412563248965919999955196308224, 2627807814905396804499456018866688
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Examples

			The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(2^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    /* q-Binomial coefficients: */ {C_q(n,k)=if(n
    				

Formula

a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 2^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025

A243950 Sum of the squares of q-binomial coefficients for q=2 in row n of triangle A022166, for n >= 0.

Original entry on oeis.org

1, 2, 11, 100, 1677, 49974, 2801567, 293257480, 59426801521, 23154622451162, 17786849024835651, 26694462878992491180, 79786045619298591331605, 469805503062346255040726910, 5538428985758278544518994721255, 129179377104085570277109465712798800, 6048537751321912538368011648067930447545
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Comments

a(n) is the number of Green's H classes in the semigroup of n X n matrices over GF(2) (cf. A359313). - Geoffrey Critzer, Jun 20 2023

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + ...
Related integer series:
A(x)^(1/2) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 + 145101805*x^7 + 29560055405*x^8 + ... + A243951(n)*x^n + ...
A022166, the triangle of q-binomial coefficients for q=2, begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1; ...
from which we can illustrate the initial terms of this sequence:
  a(0) = 1^2 = 1;
  a(1) = 1^2 + 1^2 = 2;
  a(2) = 1^2 + 3^2 + 1^2 = 11;
  a(3) = 1^2 + 7^2 + 7^2 + 1^2 = 100;
  a(4) = 1^2 + 15^2 + 35^2 + 15^2 + 1^2 = 1677;
  a(5) = 1^2 + 31^2 + 155^2 + 155^2 + 31^2 + 1^2 = 49974;
  a(6) = 1^2 + 63^2 + 651^2 + 1395^2 + 651^2 + 63^2 + 1^2 = 2801567; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[QBinomial[n, k, 2]^2, {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    {A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
    {a(n)=sum(k=0,n,A022166(n, k)^2)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 2^(n^2/2), where c = 18.0796893855819714431... if n is even and c = 18.02126069886312898683... if n is odd. - Vaclav Kotesovec, Jun 23 2014
Sum_{n>=0} a(n)*x^n/A005329(n)^2 = E(x)^2 where E(x) = Sum_{n>=0} x^n/A005329(n)^2. - Geoffrey Critzer, Jun 20 2023

A135951 Central terms of triangle A135950, the matrix inverse of triangle A022166.

Original entry on oeis.org

1, -3, 70, -11160, 12850368, -111842970624, 7558738517524480, -4024873276683363287040, 17013427111087951089139449856, -573105858480900876266937950612226048, 154142404695090288939416498797330749299097600
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2007

Keywords

Comments

A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.

Crossrefs

Programs

  • Mathematica
    max = 20; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, (n+1)/2]], {n, 1, max+1, 2}] (* Jean-François Alcover, Apr 09 2016 *)
    Table[(-1)^n 2^((n-1)n/2) QBinomial[2n, n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[2*n+1,n+1]

A243951 Self-convolution square-root of A243950, which is the sums of the squares of the q-binomial coefficients for q=2 in rows of triangle A022166.

Original entry on oeis.org

1, 1, 5, 45, 781, 23981, 1371885, 145101805, 29560055405, 11546945197165, 8881721878376045, 13338290506465706605, 39879639563413780322925, 234862804790553590007179885, 2768979430068663216466330446445, 64586918396493458414460474344516205, 3024204274887062319005574660727125346925
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 +...
where
A(x)^2 = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + 293257480*x^7 + 59426801521*x^8 +...+ A243950(n)*x^n +...
The terms in this sequence appear to be divisible by 5 everywhere except
a(n) == 1 (mod 5) when n = {0,1,4,5,20,21,24,25,100,101,104,105,120,121,124, 125,500,501,...}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Sqrt[Sum[x^m Sum[QBinomial[m, k, 2]^2, {k, 0, m}], {m, 0, n}]], {x, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    {A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
    {a(n)=polcoeff(sqrt(sum(m=0,n,x^m*sum(k=0,m,A022166(m, k)^2) +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 2^(n^2/2-1), where c = 18.0796893855819714431... if n is even and c = 18.02126069886312898683... if n is odd (constants same as for A243950). - Vaclav Kotesovec, Jun 23 2014

A143774 Eigentriangle of triangle A022166.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 6, 1, 15, 70, 70, 28, 1, 31, 310, 930, 868, 204, 1, 63, 1302, 8370, 18228, 12852, 2344
Offset: 0

Views

Author

Gary W. Adamson, Aug 31 2008

Keywords

Comments

An eigentriangle of triangle T may be defined by taking the termwise product of row n-1 of T and the first n terms of the eigensequence of T; 0<=k<=n.
Row sums = A125812 shifted 1 place to the left: (1, 2, 6, 28, 204,...).
Sum of n-th row terms = rightmost term of (n+1)-th row.
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
... (and the eigensequence of A022166 = A125812: (1, 1, 2, 6, 28, 204,...) we apply the termwise product of (n-1)-th row of A022166 and the first n terms of A125812.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 3, 2;
  1, 7, 14, 6;
  1, 15, 70, 90, 28;
  1, 31, 310, 930, 868, 204;
  ...
Row 3 of A022166 = (1, 7, 7, 1), first 4 terms of A143774 = (1, 1, 2, 6), so row 3 of A143774 = (1*1, 7*1, 7*2, 1*6) = (1, 7, 14, 6).
		

Crossrefs

Formula

Given triangle A022166: 1;

A156823 Triangle T(n,k,2) read by rows (generalized q-Stirling numbers of second kind): T(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*q*Binomial[k + n, k -j] - Binomial[j + n, j, q - 1], {j, 0, k}], with q=2, where Binomial[,] is the Gaussian q-binomial coefficient as in A022166.

Original entry on oeis.org

1, 1, 1, 1, 4, 13, 1, 11, 90, 670, 1, 26, 480, 7870, 122861, 1, 57, 2247, 77527, 2526198, 80189094, 1, 120, 9807, 695368, 46334382, 2999255160, 191467330714, 1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 16 2009

Keywords

Comments

Row sums are 1, 2, 18, 772, 131238, 82795124, 194513625552, 1734587910632112, 59780354709947486310, 8067711354683582659357588, 4300494571012469622746969756172,....

Examples

			Triangle begins:
{1},
{1, 1},
{1, 4, 13},
{1, 11, 90, 670},
{1, 26, 480, 7870, 122861},
{1, 57, 2247, 77527, 2526198, 80189094},
{1, 120, 9807, 695368, 46334382, 2999255160, 191467330714},
{1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520},
{1, 502, 169186, 49067150, 13310897072, 3498722283914, 905629978109142, 232656671284481730, 59546788896602477613},
{1, 1013, 686829, 400036769, 217729686031, 114758591845755, 59547270411289947, 30661311851453644647, 15727477144989414892230, 8051953156564494657274366},
{1, 2036, 2769657, 3233395880, 3525493671271, 3721338617555988, 3866476676171065671, 3986066951574453826080, 4093473968605655678972070, 4195675823040150254245701976, 4296294797725523713719072795542}
...
		

Crossrefs

Cf. A022166.

Programs

  • Mathematica
    t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
    b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
    t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
    Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]

Formula

t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}]; q=2; m=1.

A174526 Triangle t(n,m) = 2*A022166(n,m)-binomial(n,m), read by rows, 0<=m<=n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 300, 300, 57, 1, 1, 120, 1287, 2770, 1287, 120, 1, 1, 247, 5313, 23587, 23587, 5313, 247, 1, 1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1, 1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 21 2010

Keywords

Comments

Row sums are 1, 2, 6, 24, 118, 716, 5586, 58296, 834142, 16566404, 459510186,... = 2*A006116(n)-2^n.
The column m=1 might be A000295. - R. J. Mathar, Nov 14 2011

Examples

			1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 26, 64, 26, 1;
1, 57, 300, 300, 57, 1;
1, 120, 1287, 2770, 1287, 120, 1;
1, 247, 5313, 23587, 23587, 5313, 247, 1;
1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1;
1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834, 1013, 1;
1, 2036, 348457, 12695310, 107487764, 218443050, 107487764, 12695310, 348457, 2036, 1;
		

Crossrefs

Cf. A008292.

Programs

  • Maple
    A174526 := proc(n,k)
       2*A022166(n,k)-binomial(n,k) ;
    end proc:
    seq(seq(A174526(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
  • Mathematica
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
    (* second program: *)
    t[n_, m_] := 2 QBinomial[n, m, 2] - Binomial[n, m]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)

A156824 Generalized q-Stirling 2nd numbers (see A022166):q=3;m=2; t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}].

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 1, 18, 255, 3400, 1, 58, 2575, 106400, 4300541, 1, 179, 24234, 3038714, 371984935, 45182779173, 1, 543, 221886, 83805218, 30877084287, 11284441459641, 4113010719221412, 1, 1636, 2010034, 2280772380, 2523761295627, 2769755537579952, 3031455813294108948, 3314879002466198503080
Offset: 0

Views

Author

Roger L. Bagula, Feb 16 2009

Keywords

Comments

Row sums are: {1, 2, 27, 3674, 4409575, 45557827236, 4124326121792988, 3317913230561074271658, 23891408190421363405102296351, 1544865931069396100350109616919010834, 898255701914264060744770399113246348926078875,...}.

Examples

			{1},
{1, 1},
{1, 5, 21},
{1, 18, 255, 3400},
{1, 58, 2575, 106400, 4300541},
{1, 179, 24234, 3038714, 371984935, 45182779173},
{1, 543, 221886, 83805218, 30877084287, 11284441459641, 4113010719221412},
{1, 1636, 2010034, 2280772380, 2523761295627, 2769755537579952, 3031455813294108948, 3314879002466198503080},
{1, 4916, 18134514, 61761978300, 205103050119627, 675507759929956512, 2218696908383551468308, 7280640738500515014553320, 23884125330310241581776080853},
{1, 14757, 163358151, 1669369542291, 16633368715805358, 164364489292170484590, 1619729636032633290318498, 15947039988935644725038892138, 156958704656445989980689513610911, 1544708956416079771407327238656984139},
{1, 44281, 1470710395, 45090623244271, 1347888929379662362, 39959437240297322060278, 1181382154718570769797966170, 34895073775900019052240192095218, 1030399116864328608488320120932827143, 30423048235258853916780570577659445554071, 898225277835594788771326994531551239761914685}
		

Crossrefs

Cf. A022166.

Programs

  • Mathematica
    t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
    b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
    t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
    Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]
    (* Second program: *)
    (* S stands for qStirling2 *)
    S[n_, k_, q_] /; 1 <= k <= n := S[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}]* S[n-1, k, q];
    S[n_, 0, _] := KroneckerDelta[n, 0];
    S[0, k_, _] := KroneckerDelta[0, k];
    S[, , _] = 0;
    Table[S[n+k, n, 3], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 09 2020 *)

Formula

t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}]; q=3;m=2.

A156825 Generalized q-Stirling 2nd numbers (see A022166):q=4;m=3; t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}].

Original entry on oeis.org

1, 1, 1, 1, 6, 31, 1, 27, 598, 12714, 1, 112, 10118, 872744, 74451015, 1, 453, 164591, 56998275, 19510862790, 6659538174846, 1, 1818, 2646161, 3669008040, 5027706837390, 6869479371212196, 9379110782727354118, 1, 7279, 42396780
Offset: 0

Views

Author

Roger L. Bagula, Feb 16 2009

Keywords

Comments

Row sums are: {1, 2, 38, 13340, 75333990, 6679106200956, 9385985293477059724, 210307101689444749681505920, 75309752513141244017422009494610310, 431334730561934365895986795984802627076981452, 39523158749221869286186846414773795221687625241015791028,...}.

Examples

			{1},
{1, 1},
{1, 6, 31},
{1, 27, 598, 12714},
{1, 112, 10118, 872744, 74451015},
{1, 453, 164591, 56998275, 19510862790, 6659538174846},
{1, 1818, 2646161, 3669008040, 5027706837390, 6869479371212196, 9379110782727354118},
{1, 7279, 42396780, 235197823620, 1289443021626210, 7048517820471945006, 38501334928380019031884, 210268593304708870928675140},
{1, 29124, 678610560, 15059445506820, 330263030118109110, 7221644410750565452956, 157795323487774482338855704, 3447249110183738275563231529020, 75306305106228514816683123116517015},
{1, 116505, 10858933965, 963923954302485, 84558902081023550895, 7396063067152669466208951, 646433182194355185109143203035, 56489425142435134168297605455930355, 4936177764676230687274829745467766867270, 431329794327679618082286045004555759407867990},
{1, 466030, 173748069715, 61693218021437860, 21647880931024091567395, 7573871645483348274559946326, 2647903920069761660850674382798185, 925565107087525879643000261252991542480, 323513080232532159312906941144197336652189270, 113076340698070130663461880889470578649115862464740, 39523045672557657210255895794560156111877694170705309026}
		

Crossrefs

Cf. A022166.

Programs

  • Mathematica
    t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
    b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
    t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
    Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]

Formula

t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}]; q=4;m=3.
Showing 1-10 of 81 results. Next