A135950
Matrix inverse of triangle A022166.
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -8, 14, -7, 1, 64, -120, 70, -15, 1, -1024, 1984, -1240, 310, -31, 1, 32768, -64512, 41664, -11160, 1302, -63, 1, -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1, 268435456, -534773760, 353730560, -99486720, 12850368, -777240, 21590, -255, 1
Offset: 0
Triangle begins:
1;
-1, 1;
2, -3, 1;
-8, 14, -7, 1;
64, -120, 70, -15, 1;
-1024, 1984, -1240, 310, -31, 1;
32768, -64512, 41664, -11160, 1302, -63, 1;
-2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ...
-
max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* G. C. Greubel, Apr 15 2019 *)
-
T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1]
A125812
q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.
Original entry on oeis.org
1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184, 412563248965919999955196308224, 2627807814905396804499456018866688
Offset: 0
The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(2^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
-
/* q-Binomial coefficients: */ {C_q(n,k)=if(n
A243950
Sum of the squares of q-binomial coefficients for q=2 in row n of triangle A022166, for n >= 0.
Original entry on oeis.org
1, 2, 11, 100, 1677, 49974, 2801567, 293257480, 59426801521, 23154622451162, 17786849024835651, 26694462878992491180, 79786045619298591331605, 469805503062346255040726910, 5538428985758278544518994721255, 129179377104085570277109465712798800, 6048537751321912538368011648067930447545
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + ...
Related integer series:
A(x)^(1/2) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 + 145101805*x^7 + 29560055405*x^8 + ... + A243951(n)*x^n + ...
A022166, the triangle of q-binomial coefficients for q=2, begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1;
1, 127, 2667, 11811, 11811, 2667, 127, 1; ...
from which we can illustrate the initial terms of this sequence:
a(0) = 1^2 = 1;
a(1) = 1^2 + 1^2 = 2;
a(2) = 1^2 + 3^2 + 1^2 = 11;
a(3) = 1^2 + 7^2 + 7^2 + 1^2 = 100;
a(4) = 1^2 + 15^2 + 35^2 + 15^2 + 1^2 = 1677;
a(5) = 1^2 + 31^2 + 155^2 + 155^2 + 31^2 + 1^2 = 49974;
a(6) = 1^2 + 63^2 + 651^2 + 1395^2 + 651^2 + 63^2 + 1^2 = 2801567; ...
-
a[n_] := Sum[QBinomial[n, k, 2]^2, {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
-
{A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
{a(n)=sum(k=0,n,A022166(n, k)^2)}
for(n=0,20,print1(a(n),", "))
A135951
Central terms of triangle A135950, the matrix inverse of triangle A022166.
Original entry on oeis.org
1, -3, 70, -11160, 12850368, -111842970624, 7558738517524480, -4024873276683363287040, 17013427111087951089139449856, -573105858480900876266937950612226048, 154142404695090288939416498797330749299097600
Offset: 0
-
max = 20; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, (n+1)/2]], {n, 1, max+1, 2}] (* Jean-François Alcover, Apr 09 2016 *)
Table[(-1)^n 2^((n-1)n/2) QBinomial[2n, n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[2*n+1,n+1]
A243951
Self-convolution square-root of A243950, which is the sums of the squares of the q-binomial coefficients for q=2 in rows of triangle A022166.
Original entry on oeis.org
1, 1, 5, 45, 781, 23981, 1371885, 145101805, 29560055405, 11546945197165, 8881721878376045, 13338290506465706605, 39879639563413780322925, 234862804790553590007179885, 2768979430068663216466330446445, 64586918396493458414460474344516205, 3024204274887062319005574660727125346925
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 +...
where
A(x)^2 = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + 293257480*x^7 + 59426801521*x^8 +...+ A243950(n)*x^n +...
The terms in this sequence appear to be divisible by 5 everywhere except
a(n) == 1 (mod 5) when n = {0,1,4,5,20,21,24,25,100,101,104,105,120,121,124, 125,500,501,...}.
-
a[n_] := SeriesCoefficient[Sqrt[Sum[x^m Sum[QBinomial[m, k, 2]^2, {k, 0, m}], {m, 0, n}]], {x, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
-
{A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
{a(n)=polcoeff(sqrt(sum(m=0,n,x^m*sum(k=0,m,A022166(m, k)^2) +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 7, 14, 6, 1, 15, 70, 70, 28, 1, 31, 310, 930, 868, 204, 1, 63, 1302, 8370, 18228, 12852, 2344
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 3, 2;
1, 7, 14, 6;
1, 15, 70, 90, 28;
1, 31, 310, 930, 868, 204;
...
Row 3 of A022166 = (1, 7, 7, 1), first 4 terms of A143774 = (1, 1, 2, 6), so row 3 of A143774 = (1*1, 7*1, 7*2, 1*6) = (1, 7, 14, 6).
A156823
Triangle T(n,k,2) read by rows (generalized q-Stirling numbers of second kind): T(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*q*Binomial[k + n, k -j] - Binomial[j + n, j, q - 1], {j, 0, k}], with q=2, where Binomial[,] is the Gaussian q-binomial coefficient as in A022166.
Original entry on oeis.org
1, 1, 1, 1, 4, 13, 1, 11, 90, 670, 1, 26, 480, 7870, 122861, 1, 57, 2247, 77527, 2526198, 80189094, 1, 120, 9807, 695368, 46334382, 2999255160, 191467330714, 1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520, 1
Offset: 0
Triangle begins:
{1},
{1, 1},
{1, 4, 13},
{1, 11, 90, 670},
{1, 26, 480, 7870, 122861},
{1, 57, 2247, 77527, 2526198, 80189094},
{1, 120, 9807, 695368, 46334382, 2999255160, 191467330714},
{1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520},
{1, 502, 169186, 49067150, 13310897072, 3498722283914, 905629978109142, 232656671284481730, 59546788896602477613},
{1, 1013, 686829, 400036769, 217729686031, 114758591845755, 59547270411289947, 30661311851453644647, 15727477144989414892230, 8051953156564494657274366},
{1, 2036, 2769657, 3233395880, 3525493671271, 3721338617555988, 3866476676171065671, 3986066951574453826080, 4093473968605655678972070, 4195675823040150254245701976, 4296294797725523713719072795542}
...
-
t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]
A174526
Triangle t(n,m) = 2*A022166(n,m)-binomial(n,m), read by rows, 0<=m<=n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 300, 300, 57, 1, 1, 120, 1287, 2770, 1287, 120, 1, 1, 247, 5313, 23587, 23587, 5313, 247, 1, 1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1, 1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834
Offset: 0
1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 26, 64, 26, 1;
1, 57, 300, 300, 57, 1;
1, 120, 1287, 2770, 1287, 120, 1;
1, 247, 5313, 23587, 23587, 5313, 247, 1;
1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1;
1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834, 1013, 1;
1, 2036, 348457, 12695310, 107487764, 218443050, 107487764, 12695310, 348457, 2036, 1;
-
A174526 := proc(n,k)
2*A022166(n,k)-binomial(n,k) ;
end proc:
seq(seq(A174526(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
(* second program: *)
t[n_, m_] := 2 QBinomial[n, m, 2] - Binomial[n, m]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
A156824
Generalized q-Stirling 2nd numbers (see A022166):q=3;m=2; t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}].
Original entry on oeis.org
1, 1, 1, 1, 5, 21, 1, 18, 255, 3400, 1, 58, 2575, 106400, 4300541, 1, 179, 24234, 3038714, 371984935, 45182779173, 1, 543, 221886, 83805218, 30877084287, 11284441459641, 4113010719221412, 1, 1636, 2010034, 2280772380, 2523761295627, 2769755537579952, 3031455813294108948, 3314879002466198503080
Offset: 0
{1},
{1, 1},
{1, 5, 21},
{1, 18, 255, 3400},
{1, 58, 2575, 106400, 4300541},
{1, 179, 24234, 3038714, 371984935, 45182779173},
{1, 543, 221886, 83805218, 30877084287, 11284441459641, 4113010719221412},
{1, 1636, 2010034, 2280772380, 2523761295627, 2769755537579952, 3031455813294108948, 3314879002466198503080},
{1, 4916, 18134514, 61761978300, 205103050119627, 675507759929956512, 2218696908383551468308, 7280640738500515014553320, 23884125330310241581776080853},
{1, 14757, 163358151, 1669369542291, 16633368715805358, 164364489292170484590, 1619729636032633290318498, 15947039988935644725038892138, 156958704656445989980689513610911, 1544708956416079771407327238656984139},
{1, 44281, 1470710395, 45090623244271, 1347888929379662362, 39959437240297322060278, 1181382154718570769797966170, 34895073775900019052240192095218, 1030399116864328608488320120932827143, 30423048235258853916780570577659445554071, 898225277835594788771326994531551239761914685}
-
t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]
(* Second program: *)
(* S stands for qStirling2 *)
S[n_, k_, q_] /; 1 <= k <= n := S[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}]* S[n-1, k, q];
S[n_, 0, _] := KroneckerDelta[n, 0];
S[0, k_, _] := KroneckerDelta[0, k];
S[, , _] = 0;
Table[S[n+k, n, 3], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 09 2020 *)
A156825
Generalized q-Stirling 2nd numbers (see A022166):q=4;m=3; t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}].
Original entry on oeis.org
1, 1, 1, 1, 6, 31, 1, 27, 598, 12714, 1, 112, 10118, 872744, 74451015, 1, 453, 164591, 56998275, 19510862790, 6659538174846, 1, 1818, 2646161, 3669008040, 5027706837390, 6869479371212196, 9379110782727354118, 1, 7279, 42396780
Offset: 0
{1},
{1, 1},
{1, 6, 31},
{1, 27, 598, 12714},
{1, 112, 10118, 872744, 74451015},
{1, 453, 164591, 56998275, 19510862790, 6659538174846},
{1, 1818, 2646161, 3669008040, 5027706837390, 6869479371212196, 9379110782727354118},
{1, 7279, 42396780, 235197823620, 1289443021626210, 7048517820471945006, 38501334928380019031884, 210268593304708870928675140},
{1, 29124, 678610560, 15059445506820, 330263030118109110, 7221644410750565452956, 157795323487774482338855704, 3447249110183738275563231529020, 75306305106228514816683123116517015},
{1, 116505, 10858933965, 963923954302485, 84558902081023550895, 7396063067152669466208951, 646433182194355185109143203035, 56489425142435134168297605455930355, 4936177764676230687274829745467766867270, 431329794327679618082286045004555759407867990},
{1, 466030, 173748069715, 61693218021437860, 21647880931024091567395, 7573871645483348274559946326, 2647903920069761660850674382798185, 925565107087525879643000261252991542480, 323513080232532159312906941144197336652189270, 113076340698070130663461880889470578649115862464740, 39523045672557657210255895794560156111877694170705309026}
-
t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}];
Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]
Showing 1-10 of 81 results.
Comments