A135951
Central terms of triangle A135950, the matrix inverse of triangle A022166.
Original entry on oeis.org
1, -3, 70, -11160, 12850368, -111842970624, 7558738517524480, -4024873276683363287040, 17013427111087951089139449856, -573105858480900876266937950612226048, 154142404695090288939416498797330749299097600
Offset: 0
-
max = 20; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, (n+1)/2]], {n, 1, max+1, 2}] (* Jean-François Alcover, Apr 09 2016 *)
Table[(-1)^n 2^((n-1)n/2) QBinomial[2n, n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[2*n+1,n+1]
A022166
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1;
1, 127, 2667, 11811, 11811, 2667, 127, 1;
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Octavio A. Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.
- J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry arXiv:hep-th/9506177, 1995.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
- D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Eric W. Weisstein, q-Binomial Coefficient.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
- Index entries for sequences related to Gaussian binomial coefficients
Cf. this sequence (q=2),
A022167 (q=3),
A022168 (q=4),
A022169 (q=5),
A022170 (q=6),
A022171 (q=7),
A022172 (q=8),
A022173 (q=9),
A022174 (q=10),
A022175 (q=11),
A022176 (q=12),
A022177 (q=13),
A022178 (q=14),
A022179 (q=15),
A022180 (q=16),
A022181 (q=17),
A022182 (q=18),
A022183 (q=19),
A022184 (q=20),
A022185 (q=21),
A022186 (q=22),
A022187 (q=23),
A022188 (q=24).
Analogous triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15).
-
q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
-
A005329 := proc(n)
mul( 2^i-1,i=1..n) ;
end proc:
A022166 := proc(n,m)
A005329(n)/A005329(n-m)/A005329(m) ;
end proc: # R. J. Mathar, Nov 14 2011
-
Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
(* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
-
T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
-
qp = matpascal(9,2);
for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
-
{q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
-
def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
A158474
Triangle read by rows generated from (x-1)*(x-2)*(x-4)*...
Original entry on oeis.org
1, 1, -1, 1, -3, 2, 1, -7, 14, -8, 1, -15, 70, -120, 64, 1, -31, 310, -1240, 1984, -1024, 1, -63, 1302, -11160, 41664, -64512, 32768, 1, -127, 5334, -94488, 755904, -2731008, 4161536, -2097152, 1, -255, 21590, -777240, 12850368, -99486720, 353730560
Offset: 0
First few rows of the triangle =
1;
1, -1;
1, -3, 2;
1, -7, 14, -8;
1, -15, 70, -120, 64;
1, -31, 310, -1240, 1984, -1024;
1, -63, 1302, -11160, 41664, -64512, 32768;
1,-127, 5334, -94488, 755904, -2731008, 4161536, -2097152;
1,-255, 21590,-777240, 12850368,-99486720, 353730560,-534773760, 268435456;
...
Example: row 3 = x^3 - 7x^2 + 14x - 8 = (x-1)*(x-2)*(x-4).
-
A158474 := proc(n,k) mul(x-2^j,j=0..n-1) ; expand(%); coeftayl(%,x=0,n-k) ; end proc: # R. J. Mathar, Aug 27 2011
-
{{1}}~Join~Table[Reverse@ CoefficientList[Fold[#1 (x - #2) &, 1, 2^Range[0, n]], x], {n, 0, 7}] // Flatten (* Michael De Vlieger, Dec 22 2016 *)
A157783
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0
Triangle begins
1;
1, -1;
3, -4, 1;
27, -39, 13, -1;
729, -1080, 390, -40, 1;
59049, -88209, 32670, -3630, 121, -1;
14348907, -21493836, 8027019, -914760, 33033, -364, 1;
10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
-
A157783 := proc(n,k)
product( 3^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 3;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A157832
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (5^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 5, -6, 1, 125, -155, 31, -1, 15625, -19500, 4030, -156, 1, 9765625, -12203125, 2538250, -101530, 781, -1, 30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1, 476837158203125, -596038818359375
Offset: 0
Triangle begins
1;
1, -1;
5, -6, 1;
125, -155, 31, -1;
15625, -19500, 4030, -156, 1;
9765625, -12203125, 2538250, -101530, 781, -1;
30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1;
476837158203125, -596038818359375, 124166806640625, -5005123921875, 40040991375, -63573405, 19531, -1;
-
A157832 := proc(n,k)
product( 5^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
p[x_, n_] = If[n == 0, 1, Product[q^(i - 1) - x, {i, 1, n}]];
q = 5;
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
A157784
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (4^(i-1)-x), in row n and column 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 4, -5, 1, 64, -84, 21, -1, 4096, -5440, 1428, -85, 1, 1048576, -1396736, 371008, -23188, 341, -1, 1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1, 4398046511104, -5863704100864, 1563272675328, -99158478848
Offset: 0
Triangle begins
1;
1, -1;
4, -5, 1;
64, -84, 21, -1;
4096, -5440, 1428, -85, 1;
1048576, -1396736, 371008, -23188, 341, -1;
1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1;
4398046511104, -5863704100864, 1563272675328, -99158478848, 1549351232, -5963412, 5461, -1;
72057594037927936, -96075326035066880, 25618523216674816, -1626175790120960, 25483729063936, -99253893440, 95436436, -21845, 1;
Row n=3 represents 64 - 84*x + 21*x^2 - x^3.
-
A157784 := proc(n,k)
product( 4^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 4;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A157785
Triangle of coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2.
Original entry on oeis.org
1, 1, -1, -2, 1, 1, -8, 6, 3, -1, 64, -40, -30, 5, 1, 1024, -704, -440, 110, 11, -1, -32768, 21504, 14784, -3080, -462, 21, 1, -2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1, 268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1
Offset: 0
Triangle begins as:
1;
1, -1;
-2, 1, 1;
-8, 6, 3, -1;
64, -40, -30, 5, 1;
1024, -704, -440, 110, 11, -1;
-32768, 21504, 14784, -3080, -462, 21, 1;
-2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1;
268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1;
-
p[x_, n_, q_]:= q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
Table[CoefficientList[Series[p[x, n, -2], {x,0,n}], x], {n,0,10}]//Flatten (* G. C. Greubel, Nov 29 2021 *)
A157963
Triangle T(n,k), 0<=k<=n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,-q^5,0,...] (for q=2) = [1,1,4,6,16,28,64,...] DELTA [ -1,0,-2,0,-4,0,-8,0,-16,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, -1, 2, -3, 1, 8, -14, 7, -1, 64, -120, 70, -15, 1, 1024, -1984, 1240, -310, 31, -1, 32768, -64512, 41664, -11160, 1302, -63, 1, 2097152, -4161536, 2731008, -755904, 94488, -5334, 127, -1, 268435456, -534773760, 353730560, -99486720, 12850368
Offset: 0
Triangle begins :
1;
1, -1;
2, -3, 1;
8, -14, 7, -1;
64, -120, 70, -15, 1;
-
T:= n-> seq (coeff (mul (2^j*x-1, j=0..n-1), x, n-k), k=0..n):
seq (T(n), n=0..10); # Alois P. Heinz, Mar 26 2012
-
row[n_] := CoefficientList[(-1)^n QPochhammer[x, 2, n] + O[x]^(n+1), x] // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 26 2016 *)
A136097
a(n) = A135951(n) /[(2^(n+1)-1) * 2^(n*(n-1)/2)].
Original entry on oeis.org
1, -1, 5, -93, 6477, -1733677, 1816333805, -7526310334829, 124031223014725741, -8152285307423733458541, 2140200604371078953284092525, -2245805993494514875022552272042605, 9423041917569791458584837551185555483245
Offset: 0
-
Table[(-1)^n QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1); A[2*n+1,n+1]/( (q^(n+1)-1)/(q-1) * q^(n*(n-1)/2) )
A062733
Maximal degree of an irreducible representation of the group SL(n,2) (the group of nonsingular n X n matrices over GF(2) ).
Original entry on oeis.org
1, 2, 8, 70, 1240, 41664, 2731008
Offset: 1
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
a(2) = 2 because SL(2,2) is isomorphic to the symmetric group S_3 and the degrees are 1,1,2.
Showing 1-10 of 11 results.
Comments