A022167
Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 130, 40, 1;
1, 121, 1210, 1210, 121, 1;
1, 364, 11011, 33880, 11011, 364, 1;
1, 1093, 99463, 925771, 925771, 99463, 1093, 1;
1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for sequences related to Gaussian binomial coefficients
-
A022167 := proc(n,m)
A027871(n)/A027871(n-m)/A027871(m) ;
end proc:
seq(seq(A022167(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
p[n_] := Product[3^k-1, {k, 1, n}]; t[n_, m_] := p[n]/(p[n-m]*p[m]); Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014, after R. J. Mathar *)
Table[QBinomial[n, k, 3], {n, 0, 10}, {k, 0, n}] // Flatten
(* or, after Vladimir Kruchinin, using S for qStirling2: *)
S[n_, k_, q_] /; 1 <= k <= n := S[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}]* S[n-1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n-j, n-k, q]*(q-1)^(k-j) /. q -> 3, {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020 *)
A157832
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (5^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 5, -6, 1, 125, -155, 31, -1, 15625, -19500, 4030, -156, 1, 9765625, -12203125, 2538250, -101530, 781, -1, 30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1, 476837158203125, -596038818359375
Offset: 0
Triangle begins
1;
1, -1;
5, -6, 1;
125, -155, 31, -1;
15625, -19500, 4030, -156, 1;
9765625, -12203125, 2538250, -101530, 781, -1;
30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1;
476837158203125, -596038818359375, 124166806640625, -5005123921875, 40040991375, -63573405, 19531, -1;
-
A157832 := proc(n,k)
product( 5^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
p[x_, n_] = If[n == 0, 1, Product[q^(i - 1) - x, {i, 1, n}]];
q = 5;
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
A157784
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (4^(i-1)-x), in row n and column 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 4, -5, 1, 64, -84, 21, -1, 4096, -5440, 1428, -85, 1, 1048576, -1396736, 371008, -23188, 341, -1, 1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1, 4398046511104, -5863704100864, 1563272675328, -99158478848
Offset: 0
Triangle begins
1;
1, -1;
4, -5, 1;
64, -84, 21, -1;
4096, -5440, 1428, -85, 1;
1048576, -1396736, 371008, -23188, 341, -1;
1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1;
4398046511104, -5863704100864, 1563272675328, -99158478848, 1549351232, -5963412, 5461, -1;
72057594037927936, -96075326035066880, 25618523216674816, -1626175790120960, 25483729063936, -99253893440, 95436436, -21845, 1;
Row n=3 represents 64 - 84*x + 21*x^2 - x^3.
-
A157784 := proc(n,k)
product( 4^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 4;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A157963
Triangle T(n,k), 0<=k<=n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,-q^5,0,...] (for q=2) = [1,1,4,6,16,28,64,...] DELTA [ -1,0,-2,0,-4,0,-8,0,-16,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, -1, 2, -3, 1, 8, -14, 7, -1, 64, -120, 70, -15, 1, 1024, -1984, 1240, -310, 31, -1, 32768, -64512, 41664, -11160, 1302, -63, 1, 2097152, -4161536, 2731008, -755904, 94488, -5334, 127, -1, 268435456, -534773760, 353730560, -99486720, 12850368
Offset: 0
Triangle begins :
1;
1, -1;
2, -3, 1;
8, -14, 7, -1;
64, -120, 70, -15, 1;
-
T:= n-> seq (coeff (mul (2^j*x-1, j=0..n-1), x, n-k), k=0..n):
seq (T(n), n=0..10); # Alois P. Heinz, Mar 26 2012
-
row[n_] := CoefficientList[(-1)^n QPochhammer[x, 2, n] + O[x]^(n+1), x] // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 26 2016 *)
Showing 1-4 of 4 results.
Comments