A022169
Triangle of Gaussian binomial coefficients [ n,k ] for q = 5.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 806, 156, 1, 1, 781, 20306, 20306, 781, 1, 1, 3906, 508431, 2558556, 508431, 3906, 1, 1, 19531, 12714681, 320327931, 320327931, 12714681, 19531, 1, 1, 97656, 317886556
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 806, 156, 1;
1, 781, 20306, 20306, 781, 1;
1, 3906, 508431, 2558556, 508431, 3906, 1;
1, 19531, 12714681, 320327931, 320327931, 12714681, 19531, 1,
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to Gaussian binomial coefficients
-
A027872 := proc(n)
mul( 5^i-1, i=1..n) ;
end proc:
A022169 := proc(n, m)
A027872(n)/A027872(n-m)/A027872(m) ;
end proc: # R. J. Mathar, Mar 12 2013
-
p[n_] := Product[5^i-1, {i, 1, n}]; t[n_, k_] := p[n]/(p[k]*p[n-k]); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Table[QBinomial[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 5; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=5; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
A157783
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0
Triangle begins
1;
1, -1;
3, -4, 1;
27, -39, 13, -1;
729, -1080, 390, -40, 1;
59049, -88209, 32670, -3630, 121, -1;
14348907, -21493836, 8027019, -914760, 33033, -364, 1;
10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
-
A157783 := proc(n,k)
product( 3^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 3;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A157784
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (4^(i-1)-x), in row n and column 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 4, -5, 1, 64, -84, 21, -1, 4096, -5440, 1428, -85, 1, 1048576, -1396736, 371008, -23188, 341, -1, 1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1, 4398046511104, -5863704100864, 1563272675328, -99158478848
Offset: 0
Triangle begins
1;
1, -1;
4, -5, 1;
64, -84, 21, -1;
4096, -5440, 1428, -85, 1;
1048576, -1396736, 371008, -23188, 341, -1;
1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1;
4398046511104, -5863704100864, 1563272675328, -99158478848, 1549351232, -5963412, 5461, -1;
72057594037927936, -96075326035066880, 25618523216674816, -1626175790120960, 25483729063936, -99253893440, 95436436, -21845, 1;
Row n=3 represents 64 - 84*x + 21*x^2 - x^3.
-
A157784 := proc(n,k)
product( 4^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 4;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A157963
Triangle T(n,k), 0<=k<=n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,-q^5,0,...] (for q=2) = [1,1,4,6,16,28,64,...] DELTA [ -1,0,-2,0,-4,0,-8,0,-16,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, -1, 2, -3, 1, 8, -14, 7, -1, 64, -120, 70, -15, 1, 1024, -1984, 1240, -310, 31, -1, 32768, -64512, 41664, -11160, 1302, -63, 1, 2097152, -4161536, 2731008, -755904, 94488, -5334, 127, -1, 268435456, -534773760, 353730560, -99486720, 12850368
Offset: 0
Triangle begins :
1;
1, -1;
2, -3, 1;
8, -14, 7, -1;
64, -120, 70, -15, 1;
-
T:= n-> seq (coeff (mul (2^j*x-1, j=0..n-1), x, n-k), k=0..n):
seq (T(n), n=0..10); # Alois P. Heinz, Mar 26 2012
-
row[n_] := CoefficientList[(-1)^n QPochhammer[x, 2, n] + O[x]^(n+1), x] // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 26 2016 *)
Showing 1-4 of 4 results.
Comments