A158474 Triangle read by rows generated from (x-1)*(x-2)*(x-4)*...
1, 1, -1, 1, -3, 2, 1, -7, 14, -8, 1, -15, 70, -120, 64, 1, -31, 310, -1240, 1984, -1024, 1, -63, 1302, -11160, 41664, -64512, 32768, 1, -127, 5334, -94488, 755904, -2731008, 4161536, -2097152, 1, -255, 21590, -777240, 12850368, -99486720, 353730560
Offset: 0
Examples
First few rows of the triangle = 1; 1, -1; 1, -3, 2; 1, -7, 14, -8; 1, -15, 70, -120, 64; 1, -31, 310, -1240, 1984, -1024; 1, -63, 1302, -11160, 41664, -64512, 32768; 1,-127, 5334, -94488, 755904, -2731008, 4161536, -2097152; 1,-255, 21590,-777240, 12850368,-99486720, 353730560,-534773760, 268435456; ... Example: row 3 = x^3 - 7x^2 + 14x - 8 = (x-1)*(x-2)*(x-4).
Crossrefs
Programs
-
Maple
A158474 := proc(n,k) mul(x-2^j,j=0..n-1) ; expand(%); coeftayl(%,x=0,n-k) ; end proc: # R. J. Mathar, Aug 27 2011
-
Mathematica
{{1}}~Join~Table[Reverse@ CoefficientList[Fold[#1 (x - #2) &, 1, 2^Range[0, n]], x], {n, 0, 7}] // Flatten (* Michael De Vlieger, Dec 22 2016 *)
Formula
T(n,k) = coefficient [x^(n-k)] of (x-1)*(x-2)*(x-4)*...*(x-2^(n-1)).
T(n,k) = (-1)^k*(Sum_{j=0..k} T(k,j)*2^((k-j)*n))/(Product_{i=1..k} (2^i-1)) for n >= 0 and k > 0, i.e., e.g.f. of col k > 0 is: (-1)^k*(Sum_{j=0..k} T(k,j)* exp(2^(k-j)*t))/(Product_{i=1..k} (2^i-1)). - Werner Schulte, Dec 18 2016
T(n,k)/T(k,k) = A022166(n,k) for 0 <= k <= n. - Werner Schulte, Dec 21 2016
Comments