cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A289541 Number of subspaces of GF(2)^n with even dimension.

Original entry on oeis.org

1, 1, 2, 8, 37, 187, 1304, 14606, 222379, 4141729, 107836478, 4466744372, 258501941713, 18779494904263, 1918824942497636, 311738238353418074, 71234670515346760951, 20564497734374127115501, 8363824677163863282113162, 5408580882753786431279731328
Offset: 0

Views

Author

Geoffrey Critzer, Jul 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
    coshq[z_] := Sum[z^(2 n)/FunctionExpand[QFactorial[(2 n), q]], {n, 0, nn}];
    Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}]*
    CoefficientList[Series[coshq[z]*eq[z] /. q -> 2, {z, 0, nn}], z]

Formula

a(n)/[n]q! is the coefficient of x^n in the expansion of exp_q(x)*cosh_q(x) when q->2, and cosh_q(x) = Sum{n>=0} x^(2n)/[2n]_q!, and exp_q(x) is the q-exponential function, and [n]_q! is the q-factorial of n.
From Vaclav Kotesovec, Jun 11 2025: (Start)
a(n) ~ c * 2^(n^2/4), where
c = 3.89569562162... if mod(n,4) = 0,
c = 3.68597474538... if mod(n,4) = 1 or 3,
c = 3.47627317983... if mod(n,4) = 2. (End)

A289537 Triangle read by rows: T(n,k) is the number of k-dimensional subspaces of an n-dimensional vector space over F_2 that do not contain a given nonzero vector, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 14, 28, 8, 0, 1, 30, 140, 120, 16, 0, 1, 62, 620, 1240, 496, 32, 0, 1, 126, 2604, 11160, 10416, 2016, 64, 0, 1, 254, 10668, 94488, 188976, 85344, 8128, 128, 0, 1, 510, 43180, 777240, 3212592, 3108960, 690880, 32640, 256, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jul 07 2017

Keywords

Examples

			Triangle begins:
  1;
  1,    0;
  1,    2,    0;
  1,    6,    4,    0;
  1,   14,   28,    8,    0;
  1,   30,  140,  120,   16,    0;
  1,   62,  620, 1240,  496,   32,    0;
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Product[q^n - q^i, {i, 1, k}]/Product[q^k - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 9}] // Grid

Formula

T(n,k) = 2^k * A022166(n-1,k).

A289538 Expected dimension of the null space of a random linear operator on an n-dimensional vector space over the field with two elements as n -> infinity.

Original entry on oeis.org

8, 5, 0, 1, 7, 9, 8, 3, 0, 8, 7, 3, 9, 7, 9, 3, 3, 2, 8, 7, 6, 0, 6, 3, 2, 8, 1, 4, 9, 3, 5, 9, 1, 8, 7, 8, 8, 4, 0, 4, 2, 6, 7, 2, 5, 9, 7, 3, 2, 0, 2, 7, 2, 5, 9, 8, 7, 3, 5, 8, 0, 5, 2, 5, 5, 6, 3, 0, 9, 5, 9, 4, 1, 1, 8, 3, 3, 1, 3, 4, 4, 3, 6, 3, 0, 4, 1, 0, 6, 7, 0, 8, 8, 5, 9, 3, 5, 6, 5, 8
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2017

Keywords

Comments

More precisely, let X:L(V) -> {0,1,2,...,n} be the random variable that assigns to each linear operator T on n-dimensional vector space V over F_2, the integer j in {0,1,2,...,n} such that the dimension of the null space of T = j. Then E(X) = 0.850179183...

Crossrefs

Programs

  • Mathematica
    nn = 300; q := 2;A[x_] := Sum[1/(FunctionExpand[QFactorial[j, q]] (q - 1)^j q^Binomial[j, 2]) Product[1 - 1/q^i, {i, j + 1, \[Infinity]}] x^j, {j, 0, nn}];RealDigits[
      N[Normal[Series[D[A[x], x] /. x -> 1, {x, 0, nn}]], 100]][[1]]

Formula

Let A(x) = Sum_{n>=0} Product_{i>=n+1} (1-1/2^i)*x^n/A002884(n). Then A'(1) = 0.85017983...

A289542 Number of ordered pairs of nonzero vectors over the subspaces of GF(2)^n.

Original entry on oeis.org

0, 1, 12, 119, 1290, 16957, 285264, 6343523, 190424310, 7826128009, 444658035228, 35162773747631, 3888419271339330, 603295404971492053, 131635270366023841896, 40458451431717420232187, 17536781855825299937977230, 10728658644626168469625854241
Offset: 0

Views

Author

Geoffrey Critzer, Jul 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
    Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}]
    CoefficientList[Series[ eq[z]^2 (z + 2 z^2) /. q -> 2, {z, 0, nn}], z]

Formula

a(n)/[n]_q! is the coefficient of x^n in the expansion of (exp_q(x))^2*(x + 2 x^2) when q->2 and where exp_q(x) is the q-exponential function and [n]_q! is the q-factorial of n.

A382223 Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 23 2025

Keywords

Examples

			 1, 1,   1,    1,     1,      1,      1,...
 0, 1,   2,    3,     4,      5,      6,...
 0, 1,   5,   12,    22,     35,     51,...
 0, 1,  16,   66,   172,    355,    636,...
 0, 1,  67,  513,  1969,   5380,  12006,...
 0, 1, 374, 5769, 33856, 125090, 352476,...
		

Crossrefs

Cf. A006116 column k=2, A289539 column k=3, A005329, A382363.

Programs

  • Mathematica
    nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid

Formula

Sum_{n>=0} T(n,k)/A005329(n) = e(x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).
Showing 1-5 of 5 results.