cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006116 Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.

Original entry on oeis.org

1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605, 8933488744, 488176700923, 37558989808526, 4073773336877345, 623476476706836148, 134732283882873635911, 41128995468748254231002, 17741753171749626840952685, 10817161765507572862559462656
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear codes of length n and any dimension.
Equivalently, number of subgroups of the Abelian group (C_2)^n.
Let V_n be an n-dimensional vector space over a field with 2 elements. Let P(V_n) be the collection of all subspaces of V_n. Then a(n-1) is the number of times any given nonzero vector of V_n appears in P(V_n). - Geoffrey Critzer, Jun 05 2017
With V_n and P(V_n) as above, a(n) is also the cardinality of P(V_n). - Vaia Patta, Jun 25 2019

Examples

			O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-2x)) + x^2/((1-x)*(1-2x)*(1-4x)) + x^3/((1-x)*(1-2x)*(1-4x)*(1-8x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,5,16,67,374,2825,29212,...] = BINOMIAL([1,1,2,6,26,158,1330,...]); see A135922;
[1,2,6,26,158,1330,15414,245578,...] = BINOMIAL([1,1,3,13,83,749,...]);
[1,3,13,83,749,9363,160877,...] = BINOMIAL^2([1,1,5,33,317,4361,...]);
[1,5,33,317,4361,82789,2148561,...] = BINOMIAL^4([1,1,9,97,1433,...]);
[1,9,97,1433,30545,902601,...] = BINOMIAL^8([1,1,17,321,7601,252833,...]);
etc.
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516. Row sums of A022166.
Cf. A005329, A083906. - Paul D. Hanna, Nov 29 2008

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)+(2^(n-2)-1)*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 12 2014
  • Maple
    gf:= m-> add(x^n/mul(1-2^k*x, k=0..n), n=0..m):
    a:= n-> coeff(series(gf(n), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 24 2012
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          2^m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2021
  • Mathematica
    faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); a[n_] := Sum[qbin[n, k, 2], {k, 0, n}]; a /@ Range[0, 19] (* Jean-François Alcover, Jul 21 2011 *)
    Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(2^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
    QP = QPochhammer; a[n_] := Sum[QP[2, 2, n]/(QP[2, 2, k]*QP[2, 2, n-k]), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 23 2015 *)
    Table[Sum[QBinomial[n, k, 2], {k, 0, n}], {n, 0, 19}] (* Ivan Neretin, Mar 28 2016 *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-2^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
    
  • PARI
    a(n,q=2)=sum(k=0,n,prod(i=1,n-k,(q^(i+k)-1)/(q^i-1))) \\ Paul D. Hanna, Nov 29 2008
    

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 2^k*x). - Paul D. Hanna, Dec 06 2007
From Paul D. Hanna, Nov 29 2008: (Start)
Coefficients of the square of the q-exponential of x evaluated at q=2, where the q-exponential of x = Sum_{n>=0} x^n/F(n) and F(n) = Product{i=1..n} (q^i-1)/(q-1) is the q-factorial of n.
G.f.: (Sum_{k=0..n} x^n/F(n))^2 = Sum_{k=0..n} a(n)*x^n/F(n) where F(n) = A005329(n) = Product{i=1..n} (2^i - 1).
a(n) = Sum_{k=0..n} F(n)/(F(k)*F(n-k)) where F(n)=A005329(n) is the 2-factorial of n.
a(n) = Sum_{k=0..n} Product_{i=1..n-k} (2^(i+k) - 1)/(2^i - 1).
a(n) = Sum_{k=0..A033638(n)} A083906(n,k)*2^k. (End)
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2^k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) = 2*a(n-1) + (2^(n-1)-1)*a(n-2). [Hitzemann and Hochstattler]. - R. J. Mathar, Aug 21 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2] / QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2] / QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A323841 Erroneous version of: Number of Stanley graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 158, 1330, 15414, 245578, 5382862
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).
It appears that there might be a missing number (26) in this data list. Only when the sequence is 1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862 does it then match with A323842 via exp(t)*EGF(A323842). - Michael D. Weiner, Sep 23 2019
For correct version of this sequence see A135922. - Alois P. Heinz, Sep 24 2019

Crossrefs

A139382 Triangle read by rows, T(n,k) = (2^k-1) * T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 11, 1, 1, 40, 90, 26, 1, 1, 121, 670, 480, 57, 1, 1, 364, 4811, 7870, 2247, 120, 1, 1, 1093, 34041, 122861, 77527, 9807, 247, 1, 1, 3280, 239380, 1876956, 2526198, 695368, 41176, 502, 1, 1, 9841, 1678940, 28393720, 80189094, 46334382, 5924720, 169186, 1013, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 16 2008

Keywords

Comments

Row sums = A135922 starting with offset 1: (1, 2, 6, 26, 158, 1330, ...).
This triangle is the q-analog of A008277 (Stirling numbers of the 2nd kind) for q=2 (see Cai et al. link). - Werner Schulte, Apr 04 2019
T(n,k) is the number of naturally labeled posets on [n] with height at most one containing exactly k minimal elements. See link by David Bevan and others below. - Geoffrey Critzer, May 03 2025

Examples

			First few rows of the triangle are:
  1;
  1,   1;
  1,   4,   1;
  1,  13,  11,   1;
  1,  40,  90,  26,   1;
  1, 121, 670, 480,  57,   1;
  ...
a(13) = T(5,3) = 90 = (2^3 - 1)*T(4,3) + T(4,2) = 7*11 + 13.
		

Crossrefs

Cf. A000295 (2nd diagonal), A003462 (column 2), A016212 (column 3), A156823.

Programs

  • Maple
    # Uses[qStirling2 from A333143]
    seq(seq(qStirling2(n, k, 2), k=0..n), n=0..9); # Peter Luschny, Mar 10 2020
    # Alternative.
    A139382 := proc(n, k) if k = 1 then 1 elif k = n then 1 elif k < 1 then 0 else
    (2^k - 1)*A139382(n-1, k) + A139382(n-1, k-1) fi end:
    for n from 1 to 8 do seq(A139382(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1]:= 1; T[n_, k_]:= T[n, k] = If[k > n || k < 1, 0, (2^k-1)*T[n-1, k] + T[n-1, k-1]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    {T(n,k) = if(k<1 || k>n, 0, if(n==1 && k==1, 1, (2^k-1)*T(n-1,k) + T(n-1,k-1)))};
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
       if (k==1): return 1
       elif (k==n): return 1
       else: return (2^k-1)*T(n-1, k) + T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Apr 02 2019

Formula

Triangle read by rows, T(n,k) = (2^k-1) * T(n-1,k) + T(n-1,k-1). Let X = an infinite bidiagonal matrix with (1,3,7,15,31...) in the main diagonal and (1,1,1,...) in the subdiagonal. n-th row of the triangle = X^n * [1,0,0,0,...].
From Werner Schulte, Apr 02 2019: (Start)
G.f. of column k: col(k,t) = Sum_{n>=k} T(n,k)*t^n = t^k/Product_{i=1..k} (1 - (2^i-1)*t) for k > 0.
Sum_{k>0} col(k,t) * (Product_{i=1..k-1} (1 - 2^i)) = t (empty product equals 1).
Sum_{k=1..n} (-1)^k * 2^binomial(k,2) * T(n,k) = (-1)^n for n > 0.
An example for k=3: g.f. of column 3: col(3,t) = Sum_{n>=3} T(n,3) * t^n = 1*t^3 + 11*t^4 + 90*t^5 + 670*t^6 + ... = t^3 * (1 + 11*t + 90*t^2 + 670*t^3 + ...) = t^3 / Product_{i=1..3} (1 - (2^i - 1)*t) = t^3 / ((1 - t) * (1 - 3*t) * (1 - 7*t)) = t^3 / (1 - 11*t + 31*t^2 - 21*t^3). Perhaps the following recurrence formula is useful too: col(k,t) = col(k-1,t) * t / (1 - (2^k - 1)*t) for k > 1 with initial value col(1,t) = t / (1 - t). Finally: col(k,t) is the g.f. of column k.
With regard to the 2nd formula: We can it replace with the following formula: Sum_{k=1..n} T(n,k) * (Product_{i=1..k-1} (1-2^i)) = A000007(n-1) for n > 0 with empty product 1 (case k=1). Example for n=5: 1*1 + (-1)*40 + (-1)*(-3)*90 + (-1)*(-3)*(-7)*26 + (-1)*(-3)*(-7)*(-15)*1 = 0. (End)
T(n,k) = (1/(2^binomial(k,2)*A005329(k))) * Sum_{j=0..k} (-1)^(k-j)*2^binomial(k-j,2)*A022166(k,j)*(2^j-1)^n. - Fabian Pereyra, Jan 27 2024
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*qBinomial(j,k,2), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Jan 31 2024

Extensions

More terms from G. C. Greubel, Apr 02 2019

A323842 Number of n-node Stanley graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 11, 72, 677, 8686, 152191, 3632916, 118317913, 5271781946, 322549557299, 27208234437984, 3177021912874253, 515436469519284358, 116581257420399219175, 36866447823471507563436, 16339685138335030408029889, 10170100145132835334268145362
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).
Also, the number of naturally labeled posets on [n] with height at most two and no isolated elements. - David Bevan, Nov 17 2023

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    g:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    a:= proc(n) option remember;
          add(g(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}];
    g[n_] := g[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a[n_] := a[n] = Sum[g[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)
  • Maxima
    P(n, k, x):=if k<0 or n<0 then 0 else if k=0 then 1 else x*P(n, k-1, x)+
    2^k*P(n-1, k, (x+1)/2);
    a(n):=sum(P(n-k, k, -1), k, 0, n);
    makelist(a(n), n, 0, 10);
    /* Vladimir Kruchinin, Mar 08 2020 */

Formula

a(n) = Sum_{j=0..n} (-1)^j * C(n,j) * A135922(n-j). - Alois P. Heinz, Sep 24 2019
a(n) = Sum_{k=0..n} P(n-k, k, -1), where P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2). - Vladimir Kruchinin, Mar 09 2020
G.f.: g(1,0), where g(u,v) = 1 + x*((v-1)*g(u,v) + g(2*u,u+v)). - David Bevan, Jul 28 2022
G.f.: 1/(1+z) * Sum_{k>=0} (z^k / Prod_{i=2..k} (1 - (2^i-2)*z)). - David Bevan, Nov 17 2023; simplified on Jul 25 2024

Extensions

More terms from Alois P. Heinz, Sep 24 2019

A323843 Number of n-node connected Stanley graphs.

Original entry on oeis.org

0, 1, 1, 2, 8, 52, 502, 6824, 127166, 3205924, 108975934, 5006366048, 312601245662, 26708244267148, 3142852107059758, 512229404374936616, 116165284523764481294, 36791597841822774872116, 16320947226945992981680606, 10163558457757761048966068912
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    p:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, p(n)-add(
          binomial(n, j)*p(n-j)*a(j)*j, j=1..n-1)/n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}];
    p[n_] := p[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a[n_] := a[n] = If[n == 0, 0, p[n] - Sum[Binomial[n, j] p[n-j] a[j] j, {j, n-1}]/n];
    a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Sep 24 2019

A113226 Number of permutations of [n] avoiding the pattern 12-34.

Original entry on oeis.org

1, 1, 2, 6, 23, 107, 585, 3669, 25932, 203768, 1761109, 16595757, 169287873, 1857903529, 21823488238, 273130320026, 3627845694283, 50962676849199, 754814462534449, 11754778469338581, 191998054346198680
Offset: 0

Views

Author

David Callan, Oct 19 2005

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the vincular pattern 12-34 (also the number that avoid 43-21).
a(n) is also the number of permutations on [n] that avoid the vincular pattern 12-43 (or 21-34 or 34-21 or 43-12) or 21-43 (or 34-12). - David Bevan, Nov 15 2023
a(n) is also the number of {3,2+2}-free naturally labeled posets. - David Bevan, Nov 15 2023

Examples

			523146 contains 2346 as a 12-34 pattern because the 23 and 46 are adjacent in the permutation and the reduced form of 2346 is 1234.
		

Crossrefs

Cf. A135922 (3-free naturally labeled posets).

Programs

  • Mathematica
    Clear[u, v, w]; w[0] = w[1] = 1; w[n_] /; n >= 2 := w[n] = u[n] + v[n];
    v[n_] /; n >= 2 := v[n] = Sum[v[n, a], {a, 2, n}]; v[1, 1] = 1;
    v[n_, a_] /; 2 <= a <= n :=
    v[n, a] = Sum[u[n - 1, b], {b, a - 1}] + Sum[v[n - 1, b], {b, 2, a - 1}];
    u[1] = 1; u[n_] /; n >= 2 := u[n] = Sum[u[n, a], {a, n - 1}]; u[1, 1] = 1;
    u[n_, a_] /; a == n := 0; u[n_, a_] /; 1 <= a < n := u[n, a, n];
    u[1, 1, k_] := 1; u[2, 1, k_] := 1; u[n_, a_, k_] /; a >= n := 0;
    u[n_, a_, k_] /; 1 <= a < n && n >= 3 :=
    u[n, a, k] = Sum[u[n, a, k, b], {b, a + 1, n}];
    u[n_, a_, k_, b_] /; 1 <= a < b <= n && k >= b + 2 := u[n, a, b + 1, b];
    u[n_, a_, k_, b_] /; 1 <= a < n && b == n && k == n + 1 := u[n, a, n, n];
    u[n_, a_, k_, b_] /; 1 == a < b == n && k == 2 := 1;
    u[n_, a_, k_, b_] /; 1 <= a < b <= n && k <= b :=
    u[n, a, k, b] =
      Sum[Binomial[b - k - If[k <= a, 1, 0], j1] Binomial[
         k - 1 - If[a < k, 1, 0] - c, j2]*
        u[n - 2 - j1 - j2, c, k - If[a < k, 1, 0] - j2], {c,
        k - 1 - If[a < k, 1, 0]}, {j1, 0, b - k - If[k <= a, 1, 0]}, {j2, 0,
        k - 1 - If[a < k, 1, 0] - c}];
    u[n_, a_, k_, b_] /; 1 <= a < b < n && k == b + 1 && {a, b} == {1, 2} := 1;
    u[n_, a_, k_, b_] /; 1 <= a < b < n && k == b + 1 && {a, b} != {1, 2} :=
    u[n, a, k, b] =
      Sum[Binomial[n - b, i] Binomial[b - 2 - c, j] u[n - 2 - i - j, c,
         b - 1 - j], {c, b - 2}, {i, 0, n - b}, {j, 0, b - 2 - c}]; Table[
    w[n], {n, 0, 15}]

Formula

In the recurrence coded in Mathematica below, w[n] = # (12-34)-avoiding permutations on [n]; v[n, a] is the number that start with a descent and have first entry a; u[n, a, k, b] is the number that start with an ascent and that have (i) first entry a, (ii) other than a, all ascent initiators

A356111 The number of 1+1+1-free ordered posets of [n].

Original entry on oeis.org

1, 1, 2, 6, 23, 102, 497, 2586, 14127, 80146, 468688, 2810163, 17206549, 107261051, 679096359, 4358360362, 28309516828, 185862601727, 1232042778231, 8238155634738, 55521191613041, 376888928783870, 2575334987109807, 17704834935517727, 122401523831513816
Offset: 0

Author

David Bevan, Jul 27 2022

Keywords

Comments

A partial order R on [n] is ordered if xRy implies x < y; i.e., the natural order (<) is a linear extension of R. 1+1+1-free posets are those with width (longest antichain) at most 2.

Examples

			The six 1+1+1-free ordered posets of [3] are those with covering relations {(1,2)}, {(1,3)}, {(2,3)}, {(1,2), (1,3)}, {(1,2), (2,3)} and {(1,3), (2,3)}.
		

Crossrefs

See A006455 for the number of all ordered posets on [n], and A135922 for the number of ordered posets on [n] with height at most two.
Cf. A001181.

Formula

Conjectured g.f.: 2 - 2*x/(B(x)-1+x), where B(x) is the o.g.f. for A001181. - Michael D. Weiner, Oct 04 2024

A228365 Inverse binomial transform of the Galois numbers G_(n)^{(3)} (A006117).

Original entry on oeis.org

1, 1, 3, 15, 129, 1833, 43347, 1705623, 112931553, 12639552945, 2413134909507, 788041911546303, 442817851480763169, 428369525248261655193, 716160018275094098267859, 2067365673240491189928496263, 10333740296321620864171488891201, 89302459853776656431139970491341025
Offset: 0

Author

R. J. Mathar, Aug 21 2013

Keywords

Comments

Analog of the inverse binomial transform of G_(n)^{(q)} with q=2, A135922.
A 2-multigraph is a labeled graph with no loops but with up to 2 edges joining any pair of vertices. a(n) is the number of 2-multigraphs on [n] such that no path of length two has vertices i,j,k (in that order) with iGeoffrey Critzer, May 05 2025

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (3^(i+k)-1)/(3^i-1), i=1..n-k), k=0..n)
        end:
    a:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    Table[SeriesCoefficient[Sum[x^n/Product[(1-(3^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)

Formula

a(n) ~ c * 3^(n^2/4), where c = EllipticTheta[3,0,1/3]/QPochhammer[1/3,1/3] = 3.019783845699... if n is even and c = EllipticTheta[2,0,1/3]/QPochhammer[1/3,1/3] = 3.01826904637117... if n is odd. - Vaclav Kotesovec, Aug 23 2013

A329154 Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0

Author

Keywords

Comments

T(n,k) is the number of n X n matrices over F_2 in reduced row echelon form having exactly k zero-columns. Equivalently, T(n,k) is the number of subspaces of F_2^n that "involve" n-k coordinates. (For the definition of "involve" see the link below: D. E. Knuth, Letter to Daniel Ullman and others). - Geoffrey Critzer, May 03 2025

Examples

			Triangle starts:
[0] [1]
[1] [1,       1]
[2] [2,       2,       1]
[3] [6,       6,       3,      1]
[4] [26,      24,      12,     4,      1]
[5] [158,     130,     60,     20,     5,     1]
[6] [1330,    948,     390,    120,    30,    6,    1]
[7] [15414,   9310,    3318,   910,    210,   42,   7,   1]
[8] [245578,  123312,  37240,  8848,   1820,  336,  56,  8,  1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
		

Crossrefs

Row sums: A006116, first column: A135922.

Programs

  • Maple
    T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od;  # Peter Luschny, Oct 08 2023
  • Mathematica
    T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    x = R.gen()
    @cached_function
    def P(n, k, x):
        if k < 0 or n < 0: return R(0)
        if k == 0: return R(1)
        return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
    def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
    print(flatten([row(n) for n in range(10)]))

Formula

Let P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) and Q(n, x) = Sum_{k=0..n} P(n-k, k, x) then T(n, k) = [x^k] Q(n, x).
T(n, k) = (1/k!) * Pochhammer(n-k+1, k) * Sum_{j=0..n-k}((-1)^j*Sum_{m=0..n-k-j} (Product_{i=1..n-k-m-j} ((2^(i+m)-1)/(2^i-1))) * binomial(n-k, j)). - Detlef Meya, Oct 07 2023
T(n,k) = binomial(n,k)*A135922(n-k). (see Stanley-Locke link above) - Geoffrey Critzer, May 03 2025
E.g.f.: exp(y x)*f(x) where f(x) is the e.g.f. for A135922. - Geoffrey Critzer, May 03 2025

A383655 Triangle read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k isolated points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 11, 8, 6, 0, 1, 72, 55, 20, 10, 0, 1, 677, 432, 165, 40, 15, 0, 1, 8686, 4739, 1512, 385, 70, 21, 0, 1, 152191, 69488, 18956, 4032, 770, 112, 28, 0, 1, 3632916, 1369719, 312696, 56868, 9072, 1386, 168, 36, 0, 1, 118317913, 36329160, 6848595, 1042320, 142170, 18144, 2310, 240, 45, 0, 1
Offset: 0

Author

Geoffrey Critzer, May 04 2025

Keywords

Comments

For precise definition see the links: David Bevan and others (2023) or D.E. Knuth (1997).

Examples

			Triangle T(n,k) begins:
   1;
   0,  1;
   1,  0,  1;
   2,  3,  0,  1;
  11,  8,  6,  0, 1;
  72, 55, 20, 10, 0, 1;
  ...
		

Crossrefs

Cf. A323842 (column k=0), A135922 (row sums).

Programs

  • Mathematica
    nn = 10; g[x_] :=Total[Table[Sum[QBinomial[n, k, 2] x^n/n!, {k, 0, n}], {n, 0, nn}]]; Table[(Range[0, nn]! CoefficientList[Series[Exp[y x] Exp[-x] g[x] Exp[-x], {x, 0, nn}], {x, y}])[[i, 1 ;; i]], {i, 1, nn + 1}] // Grid

Formula

E.g.f.: exp((y-1)*x)*f(x) where f(x) is the e.g.f. for A135922.
Showing 1-10 of 11 results. Next