cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A342186 Triangle read by rows, matrix inverse of A139382.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -21, 31, -11, 1, 315, -486, 196, -26, 1, -9765, 15381, -6562, 1002, -57, 1, 615195, -978768, 428787, -69688, 4593, -120, 1, -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1
Offset: 1

Views

Author

John Keith, Mar 04 2021

Keywords

Comments

This triangle appears to be the q-analog of A008275 (Stirling numbers of the first kind) for q=2. However, A333142 has a similar definition.
Row sums of unsigned triangle are A006125 with offset 1.
|T(n,k)| is the number of descent free digraphs on [n] containing exactly k source nodes. A descent in a digraph is a pair of vertices s->t such that s>t. A descent free digraph is necessarily acyclic. A source in an acyclic digraph is a node with indegree 0. - Geoffrey Critzer, Mar 05 2025

Examples

			The triangle begins:
           1;
          -1,         1;
           3,        -4,         1;
         -21,        31,       -11,       1;
         315,      -486,       196,     -26,       1;
       -9765,     15381,     -6562,    1002,     -57,     1;
      615195,   -978768,    428787,  -69688,    4593,  -120,    1;
   -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1;
  ...
		

Crossrefs

Cf. A008275, A139382, A333142, A333143, A006125 (row sums).
Columns of unsigned triangle: A005329, A203011, A000295, A203242.

Programs

  • Maple
    A342186 := proc(n, k) if n = 1 and k = 1 then 1 elif k > n or k < 1 then 0 else
    A342186(n-1, k-1) - (2^(n-1) - 1) * A342186(n-1, k) fi end:
    for n from 1 to 8 do seq(A342186(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1] := 1; T[n_, k_] := T[n, k] = If[k > n || k < 1, 0, T[n - 1, k - 1] - (2^(n - 1) - 1)*T[n - 1, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] (* after G. C. Greubel's program for A139382 *)
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n,k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])););); m; \\ A139382
    tabl(nn) = 1/mat(nn); \\ Michel Marcus, Mar 18 2021

Formula

T(n,k) = T(n-1,k-1) - (2^(n-1)-1) * T(n-1,k), n, k >= 1, T(1, 1) = 1, T(n, 0) = 0.
For unsigned triangle, T(n, 1) = A005329(n-1); T(n, 2) = A203011(n-1); T(n, n-1) = A000295(n+1); T(n, n-2) = A203242(n-1).
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*2^binomial(n-j,2)*qBinomial(n,j,2)*binomial(j,k), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Feb 08 2024

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A005321 Upper triangular n X n (0,1)-matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0

Views

Author

Keywords

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column sums of A137252.

Programs

  • Mathematica
    max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
  • PARI
    a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A005327(k+1).
G.f.: Sum_{n >= 0} x^n*Product_{i = 1..n} ((2^i-1)/(1 + (2^i-1)*x)). - Vladeta Jovovic, Mar 10 2008
From Peter Bala, Jul 06 2017: (Start)
Two conjectural continued fractions for the o.g.f.:
1/(1 - x/(1 - x/(1 - 6*x/(1 - 9*x/(1 - 28*x/(1 - 49*x/(1 - ... - 2^(n-1)*(2^n - 1)*x/(1 - (2^n - 1)^2*x/(1 - ...)))))))));
1 + x/(1 - 2*x/(1 - 3*x/(1 - 12*x/(1 - 21*x/(1 - ... - 2^n*(2^n - 1)*x/(1 - (2^(n+1) - 1)*(2^n - 1)*x/(1 - ...))))))). Cf. A289314 and A289315. (End)
a(n) = (-1)^n*Sum_{k=0..n} qS2(n,k)*[k]!*(-1)^k, where qS2(n,k) is the triangle A139382, and [k]! is q-factorial, q=2. - Vladimir Kruchinin, Oct 10 2019
a(n) = 1 + Sum_{k=2..n} binomial(n,k)*Sum{i=2..k} (-1)^i*Product_{j=i+1..k} (2^j - 1). See Greenough. - Michel Marcus, Oct 13 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.

Original entry on oeis.org

1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, 162700898, 6801417318, 394502066810, 31849226170622, 3589334331706258, 566102993389615254, 125225331231990004138, 38920655753545108286254, 17021548688670112527781058, 10486973328106497739526535366
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2007

Keywords

Comments

Let B = {v_1,v_2,...,v_n} be a basis for F_2^n. a(n) is the number of subspaces of F_2^n that do not contain any of the vectors in B. Moreover, for 1<=k<=n, let S be a size k subset of B. a(k) is the number of subspaces of F_2^n that do not contain any of the vectors in S but do contain all the vectors in B - S. - Geoffrey Critzer, May 03 2025
Also number of Stanley graphs on n nodes. For precise definition see Knuth (1997). - Alois P. Heinz, Sep 24 2019
Also the number of naturally labeled posets on [n] with height at most two. - David Bevan, Jul 28 2022; Nov 16 2023
Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple aManfred Scheucher, Jan 05 2024

Examples

			O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    a:= proc(n) option remember;
          add(b(n-j)*binomial(n,j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
    b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
    a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
    a /@ Range[0, 19] (* Jean-François Alcover, Mar 10 2020, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
    
  • Sage
    # After Vladimir Kruchinin.
    def a(n):
        @cached_function
        def T(n, k):
            if k == 1 or k == n: return 1
            return (2^k-1)*T(n-1, k) + T(n-1, k-1)
        return sum(T(n, k) for k in (1..n)) if n > 0 else 1
    print([a(n) for n in (0..19)]) # Peter Luschny, Feb 26 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - (2^k-1)*x).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*(2^k-1))/(1-x/(x-1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2]/QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2]/QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 23 2013
a(n) = Sum_{k=0..n} qStirling2(n,k), where qStirling2 is the triangle A139382. - Vladimir Kruchinin, Feb 26 2020
G.f.: f(1), where f(y) = 1 + x*((y-1)*f(y) + f(2*y)). - David Bevan, Jul 28 2022
E.g.f.: exp(-x)*g(x) where g(x) is the e.g.f. for A006116. (given in D. E. Knuth link) - Geoffrey Critzer, May 03 2025

Extensions

References for Stanley graphs added by David Bevan, Jul 24 2024

A333143 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = 3, with 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 18, 1, 1, 85, 255, 58, 1, 1, 341, 3400, 2575, 179, 1, 1, 1365, 44541, 106400, 24234, 543, 1, 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1, 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
Offset: 0

Views

Author

Peter Luschny, Mar 09 2020

Keywords

Examples

			[0] 1
[1] 1, 1
[2] 1, 5,     1
[3] 1, 21,    18,      1
[4] 1, 85,    255,     58,        1
[5] 1, 341,   3400,    2575,      179,       1
[6] 1, 1365,  44541,   106400,    24234,     543,      1
[7] 1, 5461,  580398,  4300541,   3038714,   221886,   1636,    1
[8] 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
		

Crossrefs

T(n, 1) = A002450(n), T(n, n-1) = A000340(n).
Cf. A139382 (q=2), A333142.

Programs

  • Maple
    qStirling2 := proc(n, k, q) option remember; with(QDifferenceEquations):
    if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
    qStirling2(n-1, k-1, p) + QBrackets(k+1, p)*qStirling2(n-1, k, p);
    subs(p = q, expand(%)) end:
    seq(seq(qStirling2(n, k, 3), k=0..n), n=0..9);
  • Mathematica
    qStirling2[n_, k_, q_] /; 1 <= k <= n := (* q^(k-1) *) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n + 1, k + 1, 3], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2020 *)

Formula

qStirling2(n, k, q) = qStirling2(n-1, k-1, q) + qBrackets(k+1, q)*qStirling2(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.
Note that also a second definition is used in the literature which has an additional factor q^k attached to the first term in the equation above. The two versions differ by a factor of q^binomial(k,2).

A308326 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q = 2.

Original entry on oeis.org

1, 1, -1, 1, -4, 3, 1, -13, 33, -21, 1, -40, 270, -546, 315, 1, -121, 2010, -10080, 17955, -9765, 1, -364, 14433, -165270, 707805, -1171800, 615195, 1, -1093, 102123, -2580081, 24421005, -95765355, 151953165, -78129765, 1, -3280, 718140, -39416076, 795752370, -6790268520, 25331269320, -39221142030, 19923090075
Offset: 0

Views

Author

Werner Schulte, May 23 2019

Keywords

Comments

The formulas are given for the general case depending on some fixed integer q. The terms are valid if q = 2.
Special cases: T(0; n,k) = (-1)^k * binomial(n,k) for 0 <= k <= n and T(1; n,k) = A163626(n,k) for 0 <= k <= n.

Examples

			If q = 2 the triangle T(2; n,k) starts:
n\k:  0     1      2        3        4         5         6         7
====================================================================
  0:  1
  1:  1    -1
  2:  1    -4      3
  3:  1   -13     33      -21
  4:  1   -40    270     -546      315
  5:  1  -121   2010   -10080    17955     -9765
  6:  1  -364  14433  -165270   707805  -1171800    615195
  7:  1 -1093 102123 -2580081 24421005 -95765355 151953165 -78129765
etc.
		

Crossrefs

Programs

  • PARI
    q = 2; {T(n,k) = if(k<0 || k>n, 0, if(k==0, 1, if(q==1, (k+1) * T(n-1,k) - k * T(n-1,k-1), ((q^(k+1) - 1)/(q - 1)) * T(n-1,k) - ((q^k - 1)/(q - 1)) * T(n-1,k-1))))};
    for(n=0, 9, for(k=0, n, print1(T(n,k), ", "))) \\ Werner Schulte, May 26 2019

Formula

T(q; n,k) = [k+1]_q * T(q; n-1,k) - [k]_q * T(q; n-1,k-1) for 1 <= k <= n with initial values T(q; n,0) = 1 for n >= 0 and T(q; i,j) = 0 if i < j or j < 0 where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,k) = (1/q^binomial(k+1,2)) * (Sum_{j=0..k} (-1)^j * [k,j]_q * q^binomial(k-j,2) * ([j+1]_q)^n) for 0 <= k <= n and q not equal zero where [m,i]_q are the q-binomials (here A022166 for q = 2) and [i]_q = (q^i - 1)/(q - 1) for i >= 0.
Sum_{k=0..n} T(q; n,k) = A000007(n) for n >= 0.
T(q; n,k)/T(q; k,k) give the q-analogs of the Stirling numbers of the second kind (for q = 2 see A139382, but offset 1).
T(q; n,n) = (-1)^n * Product_{j=1..n} [j]_q for n>=0 with empty product 1 (case n = 0) where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,1) = -[n,1]_(q+1) for n >= 1 where [m,i]_q are the q-binomials (here A022166 for q = 2 and A022167 for q = 3).
G.f. of column k: col(q; t,k) = Sum_{n>=k} T(q; n,k)*t^n = ((-t)^k/(1-t)) * Product_{j=1..k} ([i]_q/(1-[i+1]_q*t)) for k>=0 with empty product 1 (case k=0) and [i]_q = i if q = 1 otherwise (q^i-1)/(q-1) for i>=0.

A355282 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0

Views

Author

Werner Schulte, Jun 26 2022

Keywords

Comments

We aim at a q-generalization of the Comtet-Lehmer numbers A354794, which are the case q = 1. Here we consider the case q = 2. The generalization is based on the qStirling numbers, for qStirling1 see A342186 and for qStirling2 see A139382. The general construction is as follows:
Let q <> 1 be a fixed integer and f_q(k) = (q^k - 1)/(q - 1) for k >= 0. Define triangle M(q; n, k) for 0 <= k <= n by M(q; n, 0) = 0^n for n >= 0, and M(q; n, k) = 0 for k > n, and M(q; n, k) = M(q; n-1, k-1) + M(q; n-1, k) * f_q(k) for 0 < k <= n. Then M(q; n, n) = 1 for n >= 0 and the matrix inverse I_q = M_q^(-1) exists. Next define the triangle T(q; n, k) for 0 <= k <= n by T(q; n, 0) = 0^n for n >= 0 and T(q; n, k) = Sum_{i=0..n-k} I(q; n-k, i) * M(q; n-1+i, n-1) for 0 < k <= n. Take account of lim_{q->1} (q^n - 1)/(q - 1) = n for n >= 0.
Conjecture: T(q; n+1, 1) = Sum_{i=0..n} I(q; n, i) * M(q; n+i, n) = (f_q(n))^n = ((q^n - 1)/(q - 1))^n for n >= 0.
Conjecture: T(q; n, k) = (Sum_{i=0..n-k} (-1)^i * q-binomial(n-1-i, k-1) * binomial(n-1, i) * q^((n-k)*(n-k-i))) / (q - 1)^(n-k) for 0 < k <= n.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0               1             2           3         4       5     6   7 8
===============================================================================
  0 : 1
  1 : 0               1
  2 : 0               1             1
  3 : 0               9             4           1
  4 : 0             343            79          11         1
  5 : 0           50625          6028         454        26       1
  6 : 0        28629151       1741861       68710      2190      57     1
  7 : 0     62523502209    1926124954    38986831    656500    9687   120   1
  8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
  etc.
		

Crossrefs

Cf. A022166, A139382, A342186, A354794, A055601 (column 1), A125128 (1st subdiagonal).

Programs

  • Maple
    # using qStirling2 from A333143.
    A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
    add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
    seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
    tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022

Formula

Conjecture: T(n+1, 1) = (2^n - 1)^n for n >= 0.
Conjecture: T(n, k) = Sum_{i=0..n-k} (-1)^i * binomial(n-1, i) * [n-1-i, k-1]_2 * 2^((n-k)*(n-k-i)) for 0 < k <= n and T(n, 0) = 0^n for n >= 0, where [x, y]_2 = A022166(x, y).
Showing 1-7 of 7 results.