A342186
Triangle read by rows, matrix inverse of A139382.
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -21, 31, -11, 1, 315, -486, 196, -26, 1, -9765, 15381, -6562, 1002, -57, 1, 615195, -978768, 428787, -69688, 4593, -120, 1, -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1
Offset: 1
The triangle begins:
1;
-1, 1;
3, -4, 1;
-21, 31, -11, 1;
315, -486, 196, -26, 1;
-9765, 15381, -6562, 1002, -57, 1;
615195, -978768, 428787, -69688, 4593, -120, 1;
-78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1;
...
-
A342186 := proc(n, k) if n = 1 and k = 1 then 1 elif k > n or k < 1 then 0 else
A342186(n-1, k-1) - (2^(n-1) - 1) * A342186(n-1, k) fi end:
for n from 1 to 8 do seq(A342186(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
-
T[1, 1] := 1; T[n_, k_] := T[n, k] = If[k > n || k < 1, 0, T[n - 1, k - 1] - (2^(n - 1) - 1)*T[n - 1, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] (* after G. C. Greubel's program for A139382 *)
-
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n,k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])););); m; \\ A139382
tabl(nn) = 1/mat(nn); \\ Michel Marcus, Mar 18 2021
A022166
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1;
1, 127, 2667, 11811, 11811, 2667, 127, 1;
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Octavio A. Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.
- J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry arXiv:hep-th/9506177, 1995.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
- D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Eric W. Weisstein, q-Binomial Coefficient.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
- Index entries for sequences related to Gaussian binomial coefficients
Cf. this sequence (q=2),
A022167 (q=3),
A022168 (q=4),
A022169 (q=5),
A022170 (q=6),
A022171 (q=7),
A022172 (q=8),
A022173 (q=9),
A022174 (q=10),
A022175 (q=11),
A022176 (q=12),
A022177 (q=13),
A022178 (q=14),
A022179 (q=15),
A022180 (q=16),
A022181 (q=17),
A022182 (q=18),
A022183 (q=19),
A022184 (q=20),
A022185 (q=21),
A022186 (q=22),
A022187 (q=23),
A022188 (q=24).
Analogous triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15).
-
q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
-
A005329 := proc(n)
mul( 2^i-1,i=1..n) ;
end proc:
A022166 := proc(n,m)
A005329(n)/A005329(n-m)/A005329(m) ;
end proc: # R. J. Mathar, Nov 14 2011
-
Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
(* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
-
T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
-
qp = matpascal(9,2);
for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
-
{q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
-
def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
A005321
Upper triangular n X n (0,1)-matrices with no zero rows or columns.
Original entry on oeis.org
1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0
- T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..80
- E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
- William T. Dugan, On the f-vectors of flow polytopes for the complete graph, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 101. See p. 3.
- T. Lockman Greenough, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
- T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976. [Annotated scanned copy]
- T. Lockman Greenough, Enumeration of interval orders without duplicated holdings, in Notices of the AMS, February 1976, page A-314.
- T. L. Greenough and K. P. Bogart, The Representation and Enumeration of Interval Orders, Preprint, circa 1976. [Annotated scanned copy]
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting Self-Dual Interval Orders, arXiv:1106.2261 [math.CO], 2011. See Corollary 2.4.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614. See Corollary 2.4.
- J. Longyear, T. Trotter, N. J. A. Sloane, Correspondence
- Index entries for sequences related to binary matrices
-
max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
-
a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019
A135922
Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.
Original entry on oeis.org
1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, 162700898, 6801417318, 394502066810, 31849226170622, 3589334331706258, 566102993389615254, 125225331231990004138, 38920655753545108286254, 17021548688670112527781058, 10486973328106497739526535366
Offset: 0
O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.
- Alois P. Heinz, Table of n, a(n) for n = 0..115
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- Lucas Gagnon, The combinatorics of normal subgroups in the unipotent upper triangular group, arXiv:2012.00108 [math.CO], 2020.
- D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission]
- Zvi Rosen and Yan X. Zhang, Convex Neural Codes in Dimension 1, arXiv:1702.06907 [math.CO], 2017. Mentions this sequence.
- R. P. Stanley, Problem 10572, The American Mathematical Monthly, 104(2) (1997), 168.
- R. P. Stanley and S. C. Locke, Graphs without increasing paths: Solution to Problem 10572, The American Mathematical Monthly, 106(2) (1999), 168.
-
b:= proc(n) option remember; add(mul(
(2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
end:
a:= proc(n) option remember;
add(b(n-j)*binomial(n,j)*(-1)^j, j=0..n)
end:
seq(a(n), n=0..19); # Alois P. Heinz, Sep 24 2019
-
Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 10 2020, after Alois P. Heinz *)
-
a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
-
# After Vladimir Kruchinin.
def a(n):
@cached_function
def T(n, k):
if k == 1 or k == n: return 1
return (2^k-1)*T(n-1, k) + T(n-1, k-1)
return sum(T(n, k) for k in (1..n)) if n > 0 else 1
print([a(n) for n in (0..19)]) # Peter Luschny, Feb 26 2020
References for Stanley graphs added by
David Bevan, Jul 24 2024
A333143
Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = 3, with 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 18, 1, 1, 85, 255, 58, 1, 1, 341, 3400, 2575, 179, 1, 1, 1365, 44541, 106400, 24234, 543, 1, 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1, 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
Offset: 0
[0] 1
[1] 1, 1
[2] 1, 5, 1
[3] 1, 21, 18, 1
[4] 1, 85, 255, 58, 1
[5] 1, 341, 3400, 2575, 179, 1
[6] 1, 1365, 44541, 106400, 24234, 543, 1
[7] 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1
[8] 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
-
qStirling2 := proc(n, k, q) option remember; with(QDifferenceEquations):
if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
qStirling2(n-1, k-1, p) + QBrackets(k+1, p)*qStirling2(n-1, k, p);
subs(p = q, expand(%)) end:
seq(seq(qStirling2(n, k, 3), k=0..n), n=0..9);
-
qStirling2[n_, k_, q_] /; 1 <= k <= n := (* q^(k-1) *) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
qStirling2[0, k_, _] := KroneckerDelta[0, k];
qStirling2[, , _] = 0;
Table[qStirling2[n + 1, k + 1, 3], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2020 *)
A308326
The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q = 2.
Original entry on oeis.org
1, 1, -1, 1, -4, 3, 1, -13, 33, -21, 1, -40, 270, -546, 315, 1, -121, 2010, -10080, 17955, -9765, 1, -364, 14433, -165270, 707805, -1171800, 615195, 1, -1093, 102123, -2580081, 24421005, -95765355, 151953165, -78129765, 1, -3280, 718140, -39416076, 795752370, -6790268520, 25331269320, -39221142030, 19923090075
Offset: 0
If q = 2 the triangle T(2; n,k) starts:
n\k: 0 1 2 3 4 5 6 7
====================================================================
0: 1
1: 1 -1
2: 1 -4 3
3: 1 -13 33 -21
4: 1 -40 270 -546 315
5: 1 -121 2010 -10080 17955 -9765
6: 1 -364 14433 -165270 707805 -1171800 615195
7: 1 -1093 102123 -2580081 24421005 -95765355 151953165 -78129765
etc.
-
q = 2; {T(n,k) = if(k<0 || k>n, 0, if(k==0, 1, if(q==1, (k+1) * T(n-1,k) - k * T(n-1,k-1), ((q^(k+1) - 1)/(q - 1)) * T(n-1,k) - ((q^k - 1)/(q - 1)) * T(n-1,k-1))))};
for(n=0, 9, for(k=0, n, print1(T(n,k), ", "))) \\ Werner Schulte, May 26 2019
A355282
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
===============================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 9 4 1
4 : 0 343 79 11 1
5 : 0 50625 6028 454 26 1
6 : 0 28629151 1741861 68710 2190 57 1
7 : 0 62523502209 1926124954 38986831 656500 9687 120 1
8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
etc.
-
# using qStirling2 from A333143.
A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
-
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022
Showing 1-7 of 7 results.
Comments