A355282 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0
Examples
Triangle T(n, k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 =============================================================================== 0 : 1 1 : 0 1 2 : 0 1 1 3 : 0 9 4 1 4 : 0 343 79 11 1 5 : 0 50625 6028 454 26 1 6 : 0 28629151 1741861 68710 2190 57 1 7 : 0 62523502209 1926124954 38986831 656500 9687 120 1 8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1 etc.
Programs
-
Maple
# using qStirling2 from A333143. A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end: seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
-
PARI
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382 tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, k
Michel Marcus, Jun 27 2022
Formula
Conjecture: T(n+1, 1) = (2^n - 1)^n for n >= 0.
Conjecture: T(n, k) = Sum_{i=0..n-k} (-1)^i * binomial(n-1, i) * [n-1-i, k-1]_2 * 2^((n-k)*(n-k-i)) for 0 < k <= n and T(n, 0) = 0^n for n >= 0, where [x, y]_2 = A022166(x, y).
Comments