A273220 a(n) = 8n^2 - 12n + 1.
9, 37, 81, 141, 217, 309, 417, 541, 681, 837, 1009, 1197, 1401, 1621, 1857, 2109, 2377, 2661, 2961, 3277, 3609, 3957, 4321, 4701, 5097, 5509, 5937, 6381, 6841, 7317, 7809, 8317, 8841, 9381, 9937, 10509, 11097, 11701, 12321, 12957, 13609, 14277, 14961, 15661
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[8 n^2 - 12 n + 1, {n, 2, 45}] (* or *) Drop[#, 2] &@ CoefficientList[Series[x^2 (9 + 10 x - 3 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jun 26 2016 *)
-
PARI
Vec(x^2*(9+10*x-3*x^2)/(1-x)^3 + O(x^50)) \\ Colin Barker, May 18 2016
Formula
From Colin Barker, May 18 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4.
G.f.: x^2*(9+10*x-3*x^2) / (1-x)^3.
(End)
Comments