cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dimitri Boscainos

Dimitri Boscainos's wiki page.

Dimitri Boscainos has authored 6 sequences.

A273220 a(n) = 8n^2 - 12n + 1.

Original entry on oeis.org

9, 37, 81, 141, 217, 309, 417, 541, 681, 837, 1009, 1197, 1401, 1621, 1857, 2109, 2377, 2661, 2961, 3277, 3609, 3957, 4321, 4701, 5097, 5509, 5937, 6381, 6841, 7317, 7809, 8317, 8841, 9381, 9937, 10509, 11097, 11701, 12321, 12957, 13609, 14277, 14961, 15661
Offset: 2

Author

Dimitri Boscainos, May 18 2016

Keywords

Comments

Sequence may be obtained by starting with the segment (9, 37) followed by the line from 37 in the direction 37, 81,... in the square spiral whose vertices are the generalized hexagonal numbers (A000217). - Omar E. Pol, Jun 26 2016

Programs

  • Mathematica
    Table[8 n^2 - 12 n + 1, {n, 2, 45}] (* or *)
    Drop[#, 2] &@ CoefficientList[Series[x^2 (9 + 10 x - 3 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jun 26 2016 *)
  • PARI
    Vec(x^2*(9+10*x-3*x^2)/(1-x)^3 + O(x^50)) \\ Colin Barker, May 18 2016

Formula

From Colin Barker, May 18 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4.
G.f.: x^2*(9+10*x-3*x^2) / (1-x)^3.
(End)

A261360 Pentatope of coefficients in expansion of (1 + 2*x + 2*y + 2*z)^n.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 4, 4, 4, 4, 8, 8, 4, 8, 4, 1, 6, 6, 6, 12, 24, 24, 12, 24, 12, 8, 24, 24, 24, 48, 24, 8, 24, 24, 8, 1, 8, 8, 8, 24, 48, 48, 24, 48, 24, 32, 96, 96, 96, 192, 96, 32, 96, 96, 32, 16, 64, 64, 96, 192, 96, 64, 192, 192, 64, 16, 64, 96, 64, 96, 1, 10, 10, 10, 40, 80, 80, 40, 80, 40, 80, 240, 240, 240, 480, 240, 80, 240, 240, 80, 80, 320, 320, 480, 960, 480, 320, 960, 960, 320, 80, 320, 480, 320, 80, 32, 160, 160, 320, 640, 320, 320, 960, 960, 320, 160, 640, 960, 640, 160, 32, 160, 320, 320, 160, 32
Offset: 0

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,i,j,k) is the number of lattice paths from (0,0,0,0) to (n,i,j,k) with steps (1,0,0,0) and two kinds of steps (1,1,0,0), (1,1,1,0) and (1,1,1,1).
The sum of the numbers in each cell of the pentatope is 7^n (A000420).

Examples

			The 5th slice (n=4) of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 2401. It is organized as follows:
.
.               1
.
.               8
.            8     8
.
.              24
.           48    48
.        24    48    24
.
.              32
.           96    96
.        96   192    96
.     32    96    96    32
.
.              16
.           64    64
.        96   192    96
.     64   192   192    64
.  16    64    96    64    16
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k, l) option remember;
          if l<0 or j<0 or i<0 or i>l or j>i or k<0 or k>j then 0
        elif {i, j, k, l}={0} then 1
        else p(i, j, k, l-1) +2*p(i-1, j, k, l-1) +2*p(i-1, j-1, k, l-1)+2*p(i-1, j-1, k-1, l-1)
          fi
        end:
    seq(seq(seq(seq(p(i, j, k, l), k=0..j), j=0..i), i=0..l), l=0..5);
    # Adapted from Alois P. Heinz's Maple program for A261356
  • PARI
    lista(nn) = {for (n=0, nn, for (i=0, n, for (j=0, i, for (k=0, j, print1(2^i*binomial(n,i)*binomial(i,j)*binomial(j,k), ", ")););););} \\ Michel Marcus, Oct 07 2015

Formula

T(i+1,j,k,l) = 2*T(i,j-1,k-1,l-1) + 2*T(i,j-1,k-1,l) + 2*T(i,j-1,k,l) + T(i,j,k,l); T(i,j,k,-1)=0, ...; T(0,0,0,0)=1.
T(n,i,j,k) = 2^i*binomial(n,i)*binomial(i,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015

A261358 Pentatope of coefficients in expansion of (1 + x + y + 2*z)^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 1, 4, 4, 1, 3, 3, 6, 3, 6, 12, 3, 12, 12, 1, 3, 6, 3, 12, 12, 1, 6, 12, 8, 1, 4, 4, 8, 6, 12, 24, 6, 24, 24, 4, 12, 24, 12, 48, 48, 4, 24, 48, 32, 1, 4, 8, 6, 24, 24, 4, 24, 48, 32, 1, 8, 24, 32, 16, 1, 5, 5, 10, 10, 20, 40, 10, 40, 40, 10, 30, 60, 30, 120, 120, 30, 120, 240, 160, 5, 40, 120, 160, 80, 1, 5, 10, 10, 40, 40, 10, 60, 120, 80, 5, 40, 120, 160, 80, 1, 10, 40, 80, 80, 32
Offset: 0

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,i,j,k) is the number of lattice paths from (0,0,0,0) to (n,i,j,k) with steps (1,0,0,0),(1,1,0,0),(1,1,1,0) and two kinds of steps (1,1,1,1).
The sum of the numbers in each cell of the pentatope is 5^n (A000351).
The sum of the antidiagonals of each triangle in each slice gives A261357. - Dimitri Boscainos, Aug 21 2015

Examples

			The 5th slice (n=4) of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 625. It is organized as follows:
.           1
.
.           4
.         4   8
.
.           6
.         12  24
.        6  24  24
.
.           4
.        12  24
.      12  48  48
.     4  24  48  32
.
.          1
.        4   8
.      6   24  24
.    4  24   48   32
.  1   8   24   32   16
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k, l) option remember;
          if l<0 or j<0 or i<0 or i>l or j>i or k<0 or k>j then 0
        elif {i, j, k, l}={0} then 1
        else p(i, j, k, l-1) +p(i-1, j, k, l-1) +p(i-1, j-1, k, l-1)+2*p(i-1, j-1, k-1, l-1)
          fi
        end:
    seq(seq(seq(seq(p(i, j, k, l), k=0..j), j=0..i), i=0..l), l=0..5);
    # Adapted from Alois P. Heinz's Maple program for A261356

Formula

T(i+1,j,k,l) = 2*T(i,j-1,k-1,l-1) + T(i,j-1,k-1,l) + T(i,j-1,k,l) + T(i,j,k,l); a(i,j,k,-1)=0,...; a(0,0,0,0)=1.
T(n,i,j,k) = 2^k*binomial(n,i)*binomial(i,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015

A261359 Pentatope of coefficients in expansion of (1 + x + 2*y + 2*z)^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 4, 1, 4, 4, 4, 8, 4, 1, 3, 6, 6, 3, 12, 12, 12, 24, 12, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 4, 8, 8, 6, 24, 24, 24, 48, 24, 4, 24, 24, 48, 96, 48, 32, 96, 96, 32, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 5, 10, 10, 10, 40, 40, 40, 80, 40, 10, 60, 60, 120, 240, 120, 80, 240, 240, 80, 5, 40, 40, 120, 240, 120, 160, 480, 480, 160, 80, 320, 480, 320, 80, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,i,j,k) is the number of lattice paths from (0,0,0,0) to (n,i,j,k) with steps (1,0,0,0), (1,1,0,0) and two kinds of steps (1,1,1,0) and (1,1,1,1).
The sum of the numbers in each cell of the pentatope is 6^n (A000400).

Examples

			The 5th slice (n=4) of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 1296. It is organized as follows:
.
.           1
.
.           4
.         8   8
.
.           6
.        24  24
.      24  48  24
.
.           4
.        24  24
.      48  96  48
.    32  96  96  32
.
.           1
.         8   8
.      24  48  24
.    32  96  96  32
.  16  64  96  64  16
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k, l) option remember;
          if l<0 or j<0 or i<0 or i>l or j>i or k<0 or k>j then 0
        elif {i, j, k, l}={0} then 1
        else p(i, j, k, l-1) +p(i-1, j, k, l-1) +2*p(i-1, j-1, k, l-1)+2*p(i-1, j-1, k-1, l-1)
          fi
        end:
    seq(seq(seq(seq(p(i, j, k, l), k=0..j), j=0..i), i=0..l), l=0..5);
    # Adapted from Alois P. Heinz's Maple program for A261356
  • PARI
    lista(nn) = {for (n=0, nn, for (i=0, n, for (j=0, i, for (k=0, j, print1(2^j*binomial(n,i)*binomial(i,j)*binomial(j,k), ", ")););););} \\ Michel Marcus, Oct 07 2015

Formula

T(i+1,j,k,l) = 2*T(i,j-1,k-1,l-1) + 2*T(i,j-1,k-1,l) + T(i,j-1,k,l) + T(i,j,k,l); T(i,j,k,-1)=0,...; T(0,0,0,0)=1.
T(n,i,j,k) = 2^j*binomial(n,i)*binomial(i,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015

A261357 Pyramid of coefficients in expansion of (1 + 2*x + 2*y)^n.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 4, 4, 8, 4, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), two kinds of steps (1,1,0) and two kinds of steps (1,1,1).
The sum of the numbers in each slice of the pyramid is 5^n.
The terms of the j-th row of the n-th slice of this pyramid are the sum of the terms in each antidiagonal of the j-th triangle of the n-th slice of A261358. - Dimitri Boscainos, Aug 21 2015

Examples

			Here is the fourth (n=3) slice of the pyramid:
        1
      6   6
   12  24  12
  8  24  24   8
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k) option remember;
          if k<0 or i<0 or i>k or j<0 or j>i then 0
        elif {i, j, k}={0} then 1
        else p(i, j, k-1) +2*p(i-1, j, k-1) +2*p(i-1, j-1, k-1)
          fi
        end:
    seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5);
    # Adapted from Alois P. Heinz's Maple program for A261356
  • Mathematica
    p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + 2*p[i - 1, j, k - 1] + 2*p[i - 1, j - 1, k - 1]]];
    Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
  • PARI
    tabf(nn) = {for (n=0, nn, for (j=0, n, for (k=0, j, print1(2^j*binomial(n,j)*binomial(j,k), ", ")); print();); print(););} \\ Michel Marcus, Oct 07 2015

Formula

T(i+1,j,k) = 2*T(i,j-1,k-1)+ 2*T(i,j-1,k) + T(i,j,k); T(i,j,-1) = 0, ...; T(0,0,0) = 1.
T(n,j,k) = 2^j*binomial(n,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015

A261356 Pyramid of coefficients in expansion of (1+x+2*y)^n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 1, 4, 4, 1, 3, 6, 3, 12, 12, 1, 6, 12, 8, 1, 4, 8, 6, 24, 24, 4, 24, 48, 32, 1, 8, 24, 32, 16, 1, 5, 10, 10, 40, 40, 10, 60, 120, 80, 5, 40, 120, 160, 80, 1, 10, 40, 80, 80, 32, 1, 6, 12, 15, 60, 60, 20, 120, 240, 160, 15, 120, 360, 480
Offset: 0

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), (1,1,0) and two kinds of steps (1,1,1).
The sum of the terms in each slice of the pyramid is 4^n (A000302).
The terms of the j-th row of the n-th slice of this pyramid are the sum of the terms in each row of the j-th triangle of the n-th slice of A189225. - Dimitri Boscainos, Aug 21 2015

Examples

			Here is the fourth (n=3) slice of the pyramid:
.....1......
...3   6....
..3  12  12.
.1  6  12  8
As an irregular triangle, rows begin:
1;
1, 1, 2;
1, 2, 4, 1, 4, 4;
1, 3, 6, 3, 12, 12, 1, 6, 12, 8;
...
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k) option remember;
          if k<0 or i<0 or i>k or j<0 or j>i then 0
        elif {i, j, k}={0} then 1
        else p(i, j, k-1) +p(i-1, j, k-1) +2*p(i-1, j-1, k-1)
          fi
        end:
    seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5);
    # Alois P. Heinz, Aug 20 2015
  • Mathematica
    p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + p[i - 1, j, k - 1] + 2* p[i - 1, j - 1, k - 1]]];
    Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Sep 16 2023, after Alois P. Heinz *)

Formula

T(i+1,j,k) = 2*T(i,j-1,k-1)+T(i,j-1,k)+T(i,j,k); T(i,j,-1)=0,...; T(0,0,0)=1.
T(n,j,k) = 2^k*binomial(n,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015