A261357 Pyramid of coefficients in expansion of (1 + 2*x + 2*y)^n.
1, 1, 2, 2, 1, 4, 4, 4, 8, 4, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0
Examples
Here is the fourth (n=3) slice of the pyramid: 1 6 6 12 24 12 8 24 24 8
Links
- Alois P. Heinz, Rows n = 0..38, flattened
Programs
-
Maple
p:= proc(i, j, k) option remember; if k<0 or i<0 or i>k or j<0 or j>i then 0 elif {i, j, k}={0} then 1 else p(i, j, k-1) +2*p(i-1, j, k-1) +2*p(i-1, j-1, k-1) fi end: seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5); # Adapted from Alois P. Heinz's Maple program for A261356
-
Mathematica
p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + 2*p[i - 1, j, k - 1] + 2*p[i - 1, j - 1, k - 1]]]; Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
-
PARI
tabf(nn) = {for (n=0, nn, for (j=0, n, for (k=0, j, print1(2^j*binomial(n,j)*binomial(j,k), ", ")); print();); print(););} \\ Michel Marcus, Oct 07 2015
Formula
T(i+1,j,k) = 2*T(i,j-1,k-1)+ 2*T(i,j-1,k) + T(i,j,k); T(i,j,-1) = 0, ...; T(0,0,0) = 1.
T(n,j,k) = 2^j*binomial(n,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015
Comments