A064078 Zsigmondy numbers for a = 2, b = 1: Zs(n, 2, 1) is the greatest divisor of 2^n - 1 (A000225) that is coprime to 2^m - 1 for all positive integers m < n.
1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 1
Keywords
Examples
a(4) = 5 because 2^4 - 1 = 15 and its divisors being 1, 3, 5, 15, only 1 and 5 are coprime to 2^2 - 1 = 3 and 2^3 - 1 = 7, and 5 is the greater of these. a(5) = 31 because 2^5 - 1 = 31 is prime. a(6) = 1 because 2^6 - 1 = 63 and its divisors being 1, 3, 7, 9, 21, 63, only 1 is coprime to all of 3, 7, 15, 31.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Wikipedia, Zsigmondy's theorem.
- Karl Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik, Vol. 3 (1892), pp. 265-284.
Programs
-
Mathematica
Table[Cyclotomic[n, 2]/GCD[n, Cyclotomic[n, 2]], {n, 40}] (* Alonso del Arte, Mar 14 2013 *)
-
PARI
a(n) = my(m = polcyclo(n, 2)); m/gcd(m,n); \\ Michel Marcus, Mar 07 2015
Formula
Denominator of Sum_{d|n} d*moebius(n/d)/(2^d-1). - Vladeta Jovovic, Apr 02 2004
Extensions
More terms from Vladeta Jovovic, Apr 02 2004
Definition corrected by Jerry Metzger, Nov 04 2009
Comments