cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dmitry Petukhov

Dmitry Petukhov's wiki page.

Dmitry Petukhov has authored 6 sequences.

A376008 Primes p such that there exists a cyclic permutation of the nonzero residues modulo p such that v^2 - 4*u*w == 0 (mod p) for any three consecutive residues u,v,w.

Original entry on oeis.org

3, 17, 251, 257, 433, 641, 1459, 3457, 3889, 21169, 39367, 54001, 65537, 110251, 114689, 139969, 210913, 246241, 274177, 319489, 629857, 746497, 974849, 995329, 1161217, 1299079, 1492993, 1769473, 2020001, 2424833, 2555521, 2654209, 5038849, 5304641, 5419387, 5746001, 6049243, 6561001
Offset: 1

Author

Keywords

Comments

In other words, for any three consecutive residues u,v,w, the quadratic polynomial u*x^2 + v*x + w has zero discriminant modulo p.
It is shown that all suitable permutations q for prime p = a(n) can be constructed by starting with q(1) = 1, q(2) = a primitive root modulo p, and then defining q(k) = q(k-1)^2/(4*q(k-2)) mod p for k >= 3. Hence, the number of suitable permutations (up to cyclic rotations) is given by A046144(a(n)).

Examples

			For a(2) = 17, a suitable cyclic permutation is (1, 3, 15, 6, 4, 12, 9, 7, 16, 14, 2, 11, 13, 5, 8, 10).
		

Crossrefs

Contains Fermat primes (A019434) as a subsequence.

Programs

  • PARI
    forprime(p=3,10^8, s=(p-1)/znorder(Mod(2,p)); if(factor(p-1)[,1]==factor(2*s)[,1] && !(p%4==1 && s%2==1),print1(p,", ")) );

Formula

An odd prime p is a term iff for s:=(p-1)/A002326((p-1)/2), radicals of p-1 and 2s coincide, excluding the case p==1 (mod 4) and s==1 (mod 2).

A262935 Increasing distances of lonely twin primes pairs to nearest prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 28, 30, 34, 42, 46, 48, 58, 88, 90, 94, 124, 130, 136, 154, 162, 168, 172, 178, 202, 216, 258, 264, 294, 342, 352, 354, 364, 366, 370, 378, 396, 408
Offset: 1

Author

Dmitry Petukhov, Oct 04 2015

Keywords

Examples

			(3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=1.
(5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=2.
(11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=4.
		

Crossrefs

Programs

  • PARI
    {m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(m, ", ") ); t=s; s=q; q=p;)}

Formula

a(n) = d if ( (p(i+1) = p(i)+2) AND (d = min(p(i+2)-p(i+1), p(i)-p(i-1)) > a(n-1)) ), where a(0) = 0, p(k) = prime(k) = A000040(k).

A262936 Lesser of lonely twin primes pairs with increasing distance to nearest prime.

Original entry on oeis.org

3, 5, 11, 29, 419, 521, 1931, 6449, 10007, 28349, 107507, 173429, 569321, 913637, 1349531, 3593201, 18286391, 80528741, 83528411, 591792347, 1971409091, 2061246347, 8579208791, 13861166687, 15250041281, 27034148369, 27066034997, 54125499299, 315361055237
Offset: 1

Author

Dmitry Petukhov, Oct 04 2015

Keywords

Examples

			(3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=3.
(5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=5.
(11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=11.
		

Crossrefs

Subsequence of A001359.

Programs

  • PARI
    {m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(s, ", ") ); t=s; s=q; q=p;)}

Formula

a(n) = p(i) if ( (p(i+1) = p(i)+2) AND (min(p(i+2)-p(i+1), p(i)-p(i-1)) > a(n-1)) ), where a(0) = 0, p(k) = prime(k) = A000040(k).

A263205 Start of a string of exactly 8 consecutive (but disjoint) pairs of twin primes.

Original entry on oeis.org

1107819732821, 3735283249697, 4588646146631, 6340698579419, 8412649748537, 9206359843907, 9667145661911, 10261787848841, 10877306469737, 13792968231041, 17231043159311, 18996369140627, 21471510972419, 21791129807147, 23105869316669, 23224938371519
Offset: 1

Author

Dmitry Petukhov, Oct 12 2015

Keywords

Examples

			Starting from 1107819732769 = A151799(A151799(1107819732821)), the gaps between the next primes are (40, 12, 2, 88, 2, 4, 2, 28, 2, 10, 2, 16, 2, 58, 2, 22, 2, 24, 16) with 8 occurrences of 2, so 1107819732821 is a term. - _Michel Marcus_, Oct 16 2015
		

A259034 Start of a string of exactly 9 consecutive (but disjoint) pairs of twin primes.

Original entry on oeis.org

170669145704411, 597655503030737, 1209758169609917, 1529543606818727, 1980326398382819, 2752137854763287, 3748062700238369, 4071945430128767, 4518517172328671, 4662894516572177, 5979435335619701, 6264049608329957, 7609375387833677, 8064845880680819
Offset: 1

Author

Dmitry Petukhov, Nov 08 2015

Keywords

Extensions

Terms a(6) and beyond from Tomáš Brada, Jun 04 2020

A256234 Magic constants of 4 X 4 pandiagonal magic squares composed of consecutive primes.

Original entry on oeis.org

682775764735680, 47184892811061120, 50194833750826260, 70151123608154420, 76685404549625256, 93295105984206480, 94615738903617540, 123483356772380760, 141536742113504220, 211283804186719200, 214070508927033000
Offset: 1

Author

Dmitry Petukhov, Mar 20 2015

Keywords

Comments

a(1) = 682775764735680, minimal 4 X 4 pandiagonal magic squares of consecutive primes, see A245721.

Examples

			a(2) =  47184892811061120:
  11796223202765101 +
    0 148 232 336
  268 300  36 112
  126  22 358 210
  322 246  90  58
a(5) = 76685404549625256:
  19171351137406219 +
    0 100 112 168
  142 138  30  70
   78  22 190  90
  160 120  48  52
		

Crossrefs

Cf. A166113 (3 X 3 square), A245721.

Extensions

a(5) added by Dmitry Petukhov, Mar 25 2015
a(6), a(7) from an anonymous participant in the project, added by Natalia Makarova, Jul 16 2015
a(8) from Alexander Andreyev, added by Natalia Makarova, Mar 29 2016
a(9) from Alexander Andreyev, a(10) from an anonymous participant in the project, a(11) from Denis Ivanov, added by Natalia Makarova, Jun 13 2016
a(12)-a(18) are confirmed by BOINC project, Mar 19 2017
a(19)-a(32) are confirmed by BOINC project, Apr 06 2017
a(33)-a(56) are confirmed and added by BOINC project, May 17 2017