Dmitry Petukhov has authored 6 sequences.
A376008
Primes p such that there exists a cyclic permutation of the nonzero residues modulo p such that v^2 - 4*u*w == 0 (mod p) for any three consecutive residues u,v,w.
Original entry on oeis.org
3, 17, 251, 257, 433, 641, 1459, 3457, 3889, 21169, 39367, 54001, 65537, 110251, 114689, 139969, 210913, 246241, 274177, 319489, 629857, 746497, 974849, 995329, 1161217, 1299079, 1492993, 1769473, 2020001, 2424833, 2555521, 2654209, 5038849, 5304641, 5419387, 5746001, 6049243, 6561001
Offset: 1
For a(2) = 17, a suitable cyclic permutation is (1, 3, 15, 6, 4, 12, 9, 7, 16, 14, 2, 11, 13, 5, 8, 10).
Contains Fermat primes (
A019434) as a subsequence.
-
forprime(p=3,10^8, s=(p-1)/znorder(Mod(2,p)); if(factor(p-1)[,1]==factor(2*s)[,1] && !(p%4==1 && s%2==1),print1(p,", ")) );
A262935
Increasing distances of lonely twin primes pairs to nearest prime.
Original entry on oeis.org
1, 2, 4, 6, 10, 12, 16, 18, 28, 30, 34, 42, 46, 48, 58, 88, 90, 94, 124, 130, 136, 154, 162, 168, 172, 178, 202, 216, 258, 264, 294, 342, 352, 354, 364, 366, 370, 378, 396, 408
Offset: 1
(3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=1.
(5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=2.
(11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=4.
-
{m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(m, ", ") ); t=s; s=q; q=p;)}
A262936
Lesser of lonely twin primes pairs with increasing distance to nearest prime.
Original entry on oeis.org
3, 5, 11, 29, 419, 521, 1931, 6449, 10007, 28349, 107507, 173429, 569321, 913637, 1349531, 3593201, 18286391, 80528741, 83528411, 591792347, 1971409091, 2061246347, 8579208791, 13861166687, 15250041281, 27034148369, 27066034997, 54125499299, 315361055237
Offset: 1
(3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=3.
(5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=5.
(11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=11.
-
{m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(s, ", ") ); t=s; s=q; q=p;)}
A263205
Start of a string of exactly 8 consecutive (but disjoint) pairs of twin primes.
Original entry on oeis.org
1107819732821, 3735283249697, 4588646146631, 6340698579419, 8412649748537, 9206359843907, 9667145661911, 10261787848841, 10877306469737, 13792968231041, 17231043159311, 18996369140627, 21471510972419, 21791129807147, 23105869316669, 23224938371519
Offset: 1
Starting from 1107819732769 = A151799(A151799(1107819732821)), the gaps between the next primes are (40, 12, 2, 88, 2, 4, 2, 28, 2, 10, 2, 16, 2, 58, 2, 22, 2, 24, 16) with 8 occurrences of 2, so 1107819732821 is a term. - _Michel Marcus_, Oct 16 2015
A259034
Start of a string of exactly 9 consecutive (but disjoint) pairs of twin primes.
Original entry on oeis.org
170669145704411, 597655503030737, 1209758169609917, 1529543606818727, 1980326398382819, 2752137854763287, 3748062700238369, 4071945430128767, 4518517172328671, 4662894516572177, 5979435335619701, 6264049608329957, 7609375387833677, 8064845880680819
Offset: 1
A256234
Magic constants of 4 X 4 pandiagonal magic squares composed of consecutive primes.
Original entry on oeis.org
682775764735680, 47184892811061120, 50194833750826260, 70151123608154420, 76685404549625256, 93295105984206480, 94615738903617540, 123483356772380760, 141536742113504220, 211283804186719200, 214070508927033000
Offset: 1
a(2) = 47184892811061120:
11796223202765101 +
0 148 232 336
268 300 36 112
126 22 358 210
322 246 90 58
a(5) = 76685404549625256:
19171351137406219 +
0 100 112 168
142 138 30 70
78 22 190 90
160 120 48 52
a(6), a(7) from an anonymous participant in the project, added by
Natalia Makarova, Jul 16 2015
a(9) from Alexander Andreyev, a(10) from an anonymous participant in the project, a(11) from Denis Ivanov, added by
Natalia Makarova, Jun 13 2016
a(12)-a(18) are confirmed by BOINC project, Mar 19 2017
a(19)-a(32) are confirmed by BOINC project, Apr 06 2017
a(33)-a(56) are confirmed and added by BOINC project, May 17 2017
Comments