Natalia Makarova has authored 23 sequences. Here are the ten most recent ones:
A352712
a(n) is the smallest prime in a sequence of 2n consecutive primes that form a symmetrical constellation of cousin primes.
Original entry on oeis.org
7, 7, 7, 853, 1286220583, 178706126107, 888895528231807, 16197229696176289
Offset: 1
a(2) = 7 since the 4 consecutive primes (7, 11, 13, 17) are two pairs of cousin primes which are symmetrical because 7 + 17 = 11 + 13.
A335394
Primes starting 16-tuples of consecutive primes that have symmetrical gaps about their mean and form 8 pairs of twin primes.
Original entry on oeis.org
2640138520272677, 119890755200639999, 156961225134536189, 193609877401516181, 215315384130681929, 404072710417411769, 517426190585100089, 519460320704755811
Offset: 1
a(1) = A274792(8) = 2640138520272677 starts a 16-tuple of consecutive primes: 2640138520272677+s for s in {0, 2, 12, 14, 30, 32, 54, 56, 90, 92, 114, 116, 132, 134, 144, 146} that are symmetric about 2640138520272677+73 and form 8 pairs of twin primes.
A274792
a(n) = smallest prime p(1) in a symmetrical constellation of n consecutive twin primes: p(1), p(1)+2, ..., p(n), p(n)+2.
Original entry on oeis.org
3, 5, 5, 663569, 3031329797, 17479880417, 1855418882807417, 2640138520272677
Offset: 1
The list of two consecutive twin primes (5, 7, 11, 13) is symmetrical because 5+13 = 7+11. Thus a(2) = 5.
The list of three consecutive twin primes (5, 7, 11, 13, 17, 19) is symmetrical because 5+19 = 7+17 = 11+13. Thus a(3) = 5.
A259733
The magic constants of most-perfect magic squares of order 8 composed of distinct prime numbers.
Original entry on oeis.org
24024, 26040, 43680, 44352, 44520, 44880
Offset: 1
a(2) = 26040 corresponds to the following most-perfect magic square by N. Makarova:
61 6229 661 5563 2087 4643 1487 5309
3719 3011 3119 3677 1693 4597 2293 3931
1777 4513 2377 3847 3803 2927 3203 3593
4139 2591 3539 3257 2113 4177 2713 3511
4423 1867 5023 1201 6449 281 5849 947
4817 1913 4217 2579 2791 3499 3391 2833
2707 3583 3307 2917 4733 1997 4133 2663
4397 2333 3797 2999 2371 3919 2971 3253
a(3) = 43680 corresponds to the following most-perfect magic square by S. Zorkin:
229 10457 859 9767 7393 3761 6763 4451
7841 3313 7211 4003 677 10009 1307 9319
953 9733 1583 9043 8117 3037 7487 3727
8623 2531 7993 3221 1459 9227 2089 8537
3527 7159 4157 6469 10691 463 10061 1153
10243 911 9613 1601 3079 7607 3709 6917
2803 7883 3433 7193 9967 1187 9337 1877
9461 1693 8831 2383 2297 8389 2927 7699
A258755
The magic constants of most-perfect magic squares of order 6 composed of distinct prime numbers.
Original entry on oeis.org
29790, 37530, 46002, 46050, 47502, 52290, 61110
Offset: 1
a(2) = 37530 corresponds to the following most-perfect magic square:
4919 9181 4049 6151 7949 5281
9293 1627 10163 4657 6263 5527
3833 10267 2963 7237 6863 6367
6359 4561 7229 7591 3329 8461
7853 6247 6983 3217 10883 2347
5273 5647 6143 8677 2243 9547
a(3) = 46002 corresponds to the following most-perfect magic square:
6053 14321 2417 6473 13901 2837
10061 233 13697 8081 2213 11717
5483 14891 1847 7043 13331 3407
8861 1433 12497 9281 1013 12917
7253 13121 3617 5273 15101 1637
8291 2003 11927 9851 443 13487
A258082
Smallest magic constant of most-perfect magic squares of order 2n composed of distinct prime numbers.
Original entry on oeis.org
240, 29790, 24024
Offset: 2
a(3)=29790 corresponds to the following most-perfect magic square of order 6:
149 9161 2309 6701 2609 8861
9067 1483 6907 3943 6607 1783
4139 5171 6299 2711 6599 4871
3229 7321 1069 9781 769 7621
5987 3323 8147 863 8447 3023
7219 3331 5059 5791 4759 3631
a(4)=24024 corresponds to the following most-perfect magic square of order 8:
19 5923 1019 4423 4793 1277 3793 2777
4877 1193 3877 2693 103 5839 1103 4339
499 5443 1499 3943 5273 797 4273 2297
5297 773 4297 2273 523 5419 1523 3919
1213 4729 2213 3229 5987 83 4987 1583
5903 167 4903 1667 1129 4813 2129 3313
733 5209 1733 3709 5507 563 4507 2063
5483 587 4483 2087 709 5233 1709 3733
A257316
Smallest magic constant of ultramagic squares of order n composed of distinct prime numbers.
Original entry on oeis.org
3505, 990, 4613, 2040
Offset: 5
a(6)=990 corresponds to the following ultramagic square found by _Max Alekseyev_:
103 59 163 233 139 293
229 257 307 131 13 53
283 17 67 173 181 269
61 149 157 263 313 47
277 317 199 23 73 101
37 191 97 167 271 227
a(7)=4613 corresponds to the following ultramagic square found by _Natalia Makarova_:
227 617 677 431 1217 1307 137
1259 827 1061 509 521 167 269
347 929 1187 17 557 719 857
89 479 29 659 1289 839 1229
461 599 761 1301 131 389 971
1049 1151 797 809 257 491 59
1181 11 101 887 641 701 1091
a(8)=2040 corresponds to the following ultramagic square found by _Natalia Makarova_:
241 199 409 467 47 79 359 239
421 137 7 53 487 179 317 439
31 281 347 353 227 277 127 397
449 197 109 379 491 337 11 67
443 499 173 19 131 401 313 61
113 383 233 283 157 163 229 479
71 193 331 23 457 503 373 89
271 151 431 463 43 101 311 269
A240922
Magic constants of associative 4 X 4 X 4 cubes composed of distinct prime numbers.
Original entry on oeis.org
1260, 1320, 1380, 1428, 1440, 1500, 1560, 1596, 1620
Offset: 1
a(1)=1260 corresponds to the following cube:
23 521 433 283
373 29 457 401
587 139 11 523
277 571 359 53
---------------
263 379 557 61
613 13 131 503
317 449 31 463
67 419 541 233
---------------
397 89 211 563
167 599 181 313
127 499 617 17
569 73 251 367
---------------
577 271 59 353
107 619 491 43
229 173 601 257
347 197 109 607
- Andrews W. S. Magic Squares & Cubes, Dover Publ, 1960 (original publication Open Court, 1917)
- William H. Benson and Oswald Jacoby. Magic Cubes. New Recreations. 1981.
- Gakuho Abe, Related Magic Squares with Prime Elements, JRM 10:2 1977-78, pp.96-97.
- A. W. Johnson, Jr., An Order 4 Prime Magic Cube, JRM 18:1, 1985-86, pp 5-7.
A239671
Magic constants of the magic cubes 3 X 3 X 3 composed of prime numbers.
Original entry on oeis.org
3309, 4659, 5091, 5433, 7179, 7431, 7773, 7863, 8223, 8367, 8403, 9501, 9543, 9573, 9987, 10029, 10113, 10371, 10551, 10821
Offset: 1
For n = 3, a(3) = 5091.
......................
. 1061 3167 863
. 2243 431 2417
. 1787 1493 1811
......................
. 2447 23 2621
. 1871 1697 1523
. 773 3371 947
......................
. 1583 1901 1607
. 977 2963 1151
. 2531 227 2333
......................
A225133
Minimal index of order n Stanley's antimagic square composed of Smith numbers.
Original entry on oeis.org
4, 143, 669, 2088, 8318, 30885, 87643
Offset: 1
Examples of order n Stanley's antimagic squares with minimal index S composed of Smith numbers:
.
n=2, S=143
22 58
85 121
.
For n=3, S=669 we have:
22 58 202
85 121 265
346 382 526
Here 22+121+526 = 22+265+382 = 58+265+346 = 58+85+526 = 202+121+346 = 202+85+382 = 669.
.
n=4, S=2088
85 94 121 517
346 355 382 778
526 535 562 958
654 663 690 1086
.
n=5, S=8318 (author V. Pavlovsky)
58 121 382 562 1111
202 265 526 706 1255
454 517 778 958 1507
1858 1921 2182 2362 2911
3802 3865 4126 4306 4855
.
n=6, S=30885
319 346 1642 1678 1966 3226
535 562 1858 1894 2182 3442
1255 1282 2578 2614 2902 4162
3595 3622 4918 4954 5242 6502
4279 4306 5602 5638 5926 7186
13639 13666 14962 14998 15286 16546
.
n=7, S=87643 (author J. K. Andersen)
454 634 1858 2614 4054 4414 16474
1642 1822 3046 3802 5242 5602 17662
2038 2218 3442 4198 5638 5998 18058
5674 5854 7078 7834 9274 9634 21694
5935 6115 7339 8095 9535 9895 21955
20362 20542 21766 22522 23962 24322 36382
24214 24394 25618 26374 27814 28174 40234
Comments