cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Natalia Makarova

Natalia Makarova's wiki page.

Natalia Makarova has authored 23 sequences. Here are the ten most recent ones:

A352712 a(n) is the smallest prime in a sequence of 2n consecutive primes that form a symmetrical constellation of cousin primes.

Original entry on oeis.org

7, 7, 7, 853, 1286220583, 178706126107, 888895528231807, 16197229696176289
Offset: 1

Author

Natalia Makarova, Mar 30 2022

Keywords

Comments

A cousin prime pair is a pair of primes that differ by 4.
a(8) was found by Petukhov.

Examples

			a(2) = 7 since the 4 consecutive primes (7, 11, 13, 17) are two pairs of cousin primes which are symmetrical because 7 + 17 = 11 + 13.
		

Crossrefs

Cf. A274792.

A335394 Primes starting 16-tuples of consecutive primes that have symmetrical gaps about their mean and form 8 pairs of twin primes.

Original entry on oeis.org

2640138520272677, 119890755200639999, 156961225134536189, 193609877401516181, 215315384130681929, 404072710417411769, 517426190585100089, 519460320704755811
Offset: 1

Author

Keywords

Examples

			a(1) = A274792(8) = 2640138520272677 starts a 16-tuple of consecutive primes: 2640138520272677+s for s in {0, 2, 12, 14, 30, 32, 54, 56, 90, 92, 114, 116, 132, 134, 144, 146} that are symmetric about 2640138520272677+73 and form 8 pairs of twin primes.
		

A274792 a(n) = smallest prime p(1) in a symmetrical constellation of n consecutive twin primes: p(1), p(1)+2, ..., p(n), p(n)+2.

Original entry on oeis.org

3, 5, 5, 663569, 3031329797, 17479880417, 1855418882807417, 2640138520272677
Offset: 1

Author

Natalia Makarova, Jul 07 2016

Keywords

Examples

			The list of two consecutive twin primes (5, 7, 11, 13) is symmetrical because 5+13 = 7+11. Thus a(2) = 5.
The list of three consecutive twin primes (5, 7, 11, 13, 17, 19) is symmetrical because 5+19 = 7+17 = 11+13. Thus a(3) = 5.
		

Crossrefs

Cf. A077800.

Extensions

a(7)-a(8) from Dmitry Petukhov, Jul 07 2016

A259733 The magic constants of most-perfect magic squares of order 8 composed of distinct prime numbers.

Original entry on oeis.org

24024, 26040, 43680, 44352, 44520, 44880
Offset: 1

Author

Natalia Makarova and Sergey Zorkin, Jul 04 2015

Keywords

Comments

A magic square of order n = 2k is most-perfect if the following two conditions hold: (i) every 2 X 2 subsquare (including wrap-around) sums to 2T; and (ii) any pair of elements at distance k along a diagonal or a skew diagonal sums to T, where T = S/k, S is the magic constant.
All most-perfect magic squares are pandiagonal.
All pandiagonal magic squares of order 4 are most-perfect, see A191533.
The magic constants of most-perfect magic squares of order 6 composed of distinct primes see A258755.
The minimal magic constant of most-perfect magic square of order 8 composed of distinct primes corresponds to a(1) = 24024, see A258082.
It seems that only the first term, or possibly the first two terms, have been proved to be correct. The other terms are conjectural (that is, there may be missing terms). - N. J. A. Sloane, Jul 28 2015

Examples

			a(2) = 26040 corresponds to the following most-perfect magic square by N. Makarova:
    61 6229  661 5563 2087 4643 1487 5309
  3719 3011 3119 3677 1693 4597 2293 3931
  1777 4513 2377 3847 3803 2927 3203 3593
  4139 2591 3539 3257 2113 4177 2713 3511
  4423 1867 5023 1201 6449  281 5849  947
  4817 1913 4217 2579 2791 3499 3391 2833
  2707 3583 3307 2917 4733 1997 4133 2663
  4397 2333 3797 2999 2371 3919 2971 3253
a(3) = 43680 corresponds to the following most-perfect magic square by S. Zorkin:
    229 10457  859 9767  7393  3761  6763 4451
   7841  3313 7211 4003   677 10009  1307 9319
    953  9733 1583 9043  8117  3037  7487 3727
   8623  2531 7993 3221  1459  9227  2089 8537
   3527  7159 4157 6469 10691   463 10061 1153
  10243   911 9613 1601  3079  7607  3709 6917
   2803  7883 3433 7193  9967  1187  9337 1877
   9461  1693 8831 2383  2297  8389  2927 7699
		

Crossrefs

A258755 The magic constants of most-perfect magic squares of order 6 composed of distinct prime numbers.

Original entry on oeis.org

29790, 37530, 46002, 46050, 47502, 52290, 61110
Offset: 1

Author

Natalia Makarova, Jun 09 2015

Keywords

Comments

A magic square of order n = 2k is most-perfect if the following two conditions hold: (i) every 2 X 2 subsquare (including wrap-around) sums to 2T; and (ii) any pair of elements at distance k along a diagonal or a skew diagonal sums to T, where T = S/k, S is the magic constant.
All most-perfect magic squares are pandiagonal.
All pandiagonal magic squares of order 4 are most-perfect.
The magic constants of most-perfect magic squares of order 4 composed of distinct primes see A191533.
The minimal magic constant of most-perfect magic square of order 6 composed of distinct primes corresponds to a(1) = 29790, see A258082.
The seven terms shown have been verified by exhaustive search. - Natalia Makarova, Jun 09 2016

Examples

			a(2) = 37530 corresponds to the following most-perfect magic square:
   4919  9181  4049  6151  7949  5281
   9293  1627 10163  4657  6263  5527
   3833 10267  2963  7237  6863  6367
   6359  4561  7229  7591  3329  8461
   7853  6247  6983  3217 10883  2347
   5273  5647  6143  8677  2243  9547
a(3) = 46002 corresponds to the following most-perfect magic square:
   6053 14321  2417  6473 13901  2837
  10061   233 13697  8081  2213 11717
   5483 14891  1847  7043 13331  3407
   8861  1433 12497  9281  1013 12917
   7253 13121  3617  5273 15101  1637
   8291  2003 11927  9851   443 13487
		

Crossrefs

A258082 Smallest magic constant of most-perfect magic squares of order 2n composed of distinct prime numbers.

Original entry on oeis.org

240, 29790, 24024
Offset: 2

Author

Natalia Makarova, May 23 2015

Keywords

Comments

A magic square of order 2n is most-perfect if the following two conditions hold: (i) every 2 x 2 subsquare (including wrap-around) sum to 2T; and (ii) any pair of elements at distance n along a diagonal or a skew diagonal sum to T, where T= S/n, S is the magic constant.
All most-perfect magic squares are pandiagonal.
All pandiagonal magic squares of order 4 are most-perfect (cf. A191533).

Examples

			a(3)=29790 corresponds to the following most-perfect magic square of order 6:
   149 9161 2309 6701 2609 8861
  9067 1483 6907 3943 6607 1783
  4139 5171 6299 2711 6599 4871
  3229 7321 1069 9781  769 7621
  5987 3323 8147  863 8447 3023
  7219 3331 5059 5791 4759 3631
a(4)=24024 corresponds to the following most-perfect magic square of order 8:
    19 5923 1019 4423 4793 1277 3793 2777
  4877 1193 3877 2693  103 5839 1103 4339
   499 5443 1499 3943 5273  797 4273 2297
  5297  773 4297 2273  523 5419 1523 3919
  1213 4729 2213 3229 5987   83 4987 1583
  5903  167 4903 1667 1129 4813 2129 3313
   733 5209 1733 3709 5507  563 4507 2063
  5483  587 4483 2087  709 5233 1709 3733
		

Crossrefs

Cf. A191533.

A257316 Smallest magic constant of ultramagic squares of order n composed of distinct prime numbers.

Original entry on oeis.org

3505, 990, 4613, 2040
Offset: 5

Author

Natalia Makarova, Apr 20 2015

Keywords

Comments

A magic square is associative if the sum of any two elements symmetric about its center is the same. A magic square is pandiagonal if the sum of the numbers in any broken diagonal equals the magic constant. A magic square is ultramagic if it is associative and pandiagonal.
Ultramagic squares exist for orders n>=5.
The following bounds for the next terms are known: 12249<=a(9)<=13059, 4200<=a(10)<=46150, a(11)>=26521, a(12)>=8820, a(13)>=49439, a(14)>=16170, a(15)>=74595, a(16)>=21840.

Examples

			a(6)=990 corresponds to the following ultramagic square found by _Max Alekseyev_:
  103  59 163 233 139 293
  229 257 307 131  13  53
  283  17  67 173 181 269
   61 149 157 263 313  47
  277 317 199  23  73 101
   37 191  97 167 271 227
a(7)=4613 corresponds to the following ultramagic square found by _Natalia Makarova_:
   227  617  677  431 1217 1307  137
  1259  827 1061  509  521  167  269
   347  929 1187   17  557  719  857
    89  479   29  659 1289  839 1229
   461  599  761 1301  131  389  971
  1049 1151  797  809  257  491   59
  1181   11  101  887  641  701 1091
a(8)=2040 corresponds to the following ultramagic square found by _Natalia Makarova_:
  241 199 409 467  47  79 359 239
  421 137   7  53 487 179 317 439
   31 281 347 353 227 277 127 397
  449 197 109 379 491 337  11  67
  443 499 173  19 131 401 313  61
  113 383 233 283 157 163 229 479
   71 193 331  23 457 503 373  89
  271 151 431 463  43 101 311 269
		

Crossrefs

A240922 Magic constants of associative 4 X 4 X 4 cubes composed of distinct prime numbers.

Original entry on oeis.org

1260, 1320, 1380, 1428, 1440, 1500, 1560, 1596, 1620
Offset: 1

Author

Natalia Makarova, Aug 02 2014

Keywords

Comments

A magic cube is associative if the sum of its any two elements that are symmetric about the cube center equals the same number, called the associativity constant of the cube.
All magic 3 X 3 X 3 cubes are associative.

Examples

			a(1)=1260 corresponds to the following cube:
   23 521 433 283
  373  29 457 401
  587 139  11 523
  277 571 359  53
  ---------------
  263 379 557  61
  613  13 131 503
  317 449  31 463
   67 419 541 233
  ---------------
  397  89 211 563
  167 599 181 313
  127 499 617  17
  569  73 251 367
  ---------------
  577 271  59 353
  107 619 491  43
  229 173 601 257
  347 197 109 607
		

References

  • Andrews W. S. Magic Squares & Cubes, Dover Publ, 1960 (original publication Open Court, 1917)
  • William H. Benson and Oswald Jacoby. Magic Cubes. New Recreations. 1981.
  • Gakuho Abe, Related Magic Squares with Prime Elements, JRM 10:2 1977-78, pp.96-97.
  • A. W. Johnson, Jr., An Order 4 Prime Magic Cube, JRM 18:1, 1985-86, pp 5-7.

Crossrefs

Cf. A239671.

A239671 Magic constants of the magic cubes 3 X 3 X 3 composed of prime numbers.

Original entry on oeis.org

3309, 4659, 5091, 5433, 7179, 7431, 7773, 7863, 8223, 8367, 8403, 9501, 9543, 9573, 9987, 10029, 10113, 10371, 10551, 10821
Offset: 1

Author

Natalia Makarova, Mar 23 2014

Keywords

Comments

A magic cube is the 3-dimensional equivalent of a magic square, that is, n^3 distinct integers arranged in an n X n X n grid such that the sum of the integers in each row, each column, each pillar, and the four main space diagonals is equal to the same number, called magic constant of the cube.
The magic cube is associative if the sum of any 2 numbers, symmetrically located relative to the center of the cube, is equal to the same number, called constant of associativity of the cube.
Magic cubes of order 3 are simple magic cubes.
All magic cubes of order 3 are associative.
The first two prime magic cubes of order 3 were found by Akio Suzuki in 1977 (see Prime Number Magic Cubes link).
The general formula of the magic cube of order 3:
......................................................
. x1, x2, 3k/2-x1-x2,
. x3, x4, 3k/2-x3-x4,
. 3k/2-x1-x3, 3k/2-x2-x4, -3k/2+x1+x2+x3+x4,
.......................................................
. -k+x2+x3+x4, 2k-2*x2-x4, k/2+x2-x3,
. 2k-2*x3-x4, k/2, -k+2*x3+x4,
. k/2-x2+x3, -k+2*x2+x4, 2k-x2-x3-x4,
.......................................................
. 5k/2-x1-x2-x3-x4, -k/2+x2+x4, -k/2+x1+x3,
. -k/2+x3+x4, k-x4, k-x3,
. -k/2+x1+x2, k-x2, k-x1
........................................................
Here k is the constant of associativity (any even number), x1, x2, x3, x4 are any integers.

Examples

			For n = 3, a(3) = 5091.
......................
.  1061  3167   863
.  2243   431  2417
.  1787  1493  1811
......................
.  2447    23  2621
.  1871  1697  1523
.   773  3371   947
......................
.  1583  1901  1607
.   977  2963  1151
.  2531   227  2333
......................
		

A225133 Minimal index of order n Stanley's antimagic square composed of Smith numbers.

Original entry on oeis.org

4, 143, 669, 2088, 8318, 30885, 87643
Offset: 1

Author

Natalia Makarova, Apr 29 2013

Keywords

Comments

Stanley antimagic square of index d and order n is an n X n matrix where the sum of any n matrix elements in pairwise distinct rows and pairwise distinct columns equals d.

Examples

			Examples of order n Stanley's antimagic squares with minimal index S composed of Smith numbers:
.
n=2, S=143
  22  58
  85 121
.
For n=3, S=669 we have:
   22  58 202
   85 121 265
  346 382 526
Here 22+121+526 = 22+265+382 = 58+265+346 = 58+85+526 = 202+121+346 = 202+85+382 = 669.
.
n=4, S=2088
   85  94 121 517
  346 355 382 778
  526 535 562 958
  654 663 690 1086
.
n=5, S=8318 (author V. Pavlovsky)
    58  121  382  562 1111
   202  265  526  706 1255
   454  517  778  958 1507
  1858 1921 2182 2362 2911
  3802 3865 4126 4306 4855
.
n=6, S=30885
    319   346  1642  1678  1966  3226
    535   562  1858  1894  2182  3442
   1255  1282  2578  2614  2902  4162
   3595  3622  4918  4954  5242  6502
   4279  4306  5602  5638  5926  7186
  13639 13666 14962 14998 15286 16546
.
n=7, S=87643 (author J. K. Andersen)
    454   634  1858  2614  4054  4414 16474
   1642  1822  3046  3802  5242  5602 17662
   2038  2218  3442  4198  5638  5998 18058
   5674  5854  7078  7834  9274  9634 21694
   5935  6115  7339  8095  9535  9895 21955
  20362 20542 21766 22522 23962 24322 36382
  24214 24394 25618 26374 27814 28174 40234
		

Crossrefs