A177434 The magic constants of 6 X 6 magic squares composed of consecutive primes.
484, 744, 806, 868, 930, 1390, 1460, 1494, 1634, 1704, 1740, 1848, 1992, 2100, 2172, 2316, 2390, 2540, 3116, 3192, 3694, 3734, 3774, 4486, 4946, 4988, 5736, 6104, 6148, 6526, 6568, 6610, 6776, 6820, 6950, 7036, 7078, 7120, 7984, 8118, 8162, 8828, 9318
Offset: 1
Keywords
Examples
S = 744 [139 113 151 131 83 127] [223 149 89 47 157 79] [173 103 181 167 59 61] [ 67 137 53 97 211 179] [101 199 73 109 71 191] [ 41 43 197 193 163 107] S = 806 [131 53 107 157 191 167] [ 89 229 179 97 109 103] [ 83 211 71 139 79 223] [113 101 137 181 227 47] [197 61 163 59 127 199] [193 151 149 173 73 67] S = 868 [191 137 79 193 197 71] [ 67 157 73 229 239 103] [179 173 167 97 101 151] [211 181 223 61 109 83] [113 131 199 139 59 227] [107 89 127 149 163 233] Magic square with S=930 can be pan-diagonal (cf. A073523). Example of a non-pan-diagonal square: S = 930 [167 71 151 199 131 211] [ 89 241 181 73 113 233] [ 83 227 127 197 229 67] [239 137 139 103 163 149] [179 97 223 251 101 79] [173 157 109 107 193 191]
Links
- Natalya Makarova, Author's webpage (in Russian)
Crossrefs
Programs
-
PARI
A177434(n, p=A272387[n], N=6)=sum(i=2, N^2, p=nextprime(p+1), p)/N \\ Uses a precomputed array A272387, but can actually be used to find the terms, cf A272387. - M. F. Hasler, Oct 28 2018
Formula
Extensions
Edited by M. F. Hasler, Oct 28 2018
Comments