A262936 Lesser of lonely twin primes pairs with increasing distance to nearest prime.
3, 5, 11, 29, 419, 521, 1931, 6449, 10007, 28349, 107507, 173429, 569321, 913637, 1349531, 3593201, 18286391, 80528741, 83528411, 591792347, 1971409091, 2061246347, 8579208791, 13861166687, 15250041281, 27034148369, 27066034997, 54125499299, 315361055237
Offset: 1
Keywords
Examples
(3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=3. (5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=5. (11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=11.
Links
- Dmitry Petukhov, Table of n, a(n) for n = 1..40
Programs
-
PARI
{m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(s, ", ") ); t=s; s=q; q=p;)}
Formula
a(n) = p(i) if ( (p(i+1) = p(i)+2) AND (min(p(i+2)-p(i+1), p(i)-p(i-1)) > a(n-1)) ), where a(0) = 0, p(k) = prime(k) = A000040(k).
Comments