cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Andrew Ivashenko

Andrew Ivashenko's wiki page.

Andrew Ivashenko has authored 3 sequences.

A307018 Total number of parts of size 3 in the partitions of n into parts of size 2 and 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, 25, 20, 25, 30, 25, 30, 36, 30, 36, 42, 36, 42, 49, 42, 49, 56, 49, 56, 64, 56, 64, 72, 64, 72, 81, 72, 81, 90, 81, 90, 100, 90, 100, 110, 100, 110, 121, 110, 121, 132
Offset: 0

Author

Andrew Ivashenko, Mar 19 2019

Keywords

Programs

  • GAP
    a:=[0,0,0,1,0,1,2,1];; for n in [9..80] do a[n]:=a[n-2]+2*a[n-3] -2*a[n-5]-a[n-6]+a[n-8]; od; a; # G. C. Greubel, Apr 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); [0,0,0] cat Coefficients(R!( x^3/((1-x^2)*(1-x^3)^2) )); // G. C. Greubel, Apr 03 2019
    
  • Mathematica
    LinearRecurrence[{0,1,2,0,-2,-1,0,1}, {0,0,0,1,0,1,2,1}, 80] (* G. C. Greubel, Apr 03 2019 *)
    Table[(6n(2+n)-5-27(-1)^n+8(4+3n)Cos[2n Pi/3]-8Sqrt[3]n Sin[2n Pi/3])/216,{n,0,66}] (* Stefano Spezia, Apr 21 2022 *)
  • PARI
    my(x='x+O('x^80)); concat([0,0,0], Vec(x^3/((1-x^2)*(1-x^3)^2))) \\ G. C. Greubel, Apr 03 2019
    
  • Sage
    (x^3/((1-x^2)*(1-x^3)^2)).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
    

Formula

a(n+2) = A321202(n) - A114209(n+1).
a(3n+1) = A002620(n+2).
a(3n+2) = A002620(n+1).
a(3n+3) = A002620(n+2).
G.f.: x^3/((1+x)*(1+x+x^2)^2*(1-x)^3). - Alois P. Heinz, Mar 19 2019
a(n) = a(n-2) + 2*a(n-3) - 2*a(n-5) - a(n-6) + a(n-8). - G. C. Greubel, Apr 03 2019
a(n) = (6*n*(2 + n) + 8*(4 + 3*n)*cos(2*n*Pi/3) - 8*sqrt(3)*n*sin(2*n*Pi/3) - 5 - 27*(-1)^n)/216. - Stefano Spezia, Apr 21 2022
From Ridouane Oudra, Nov 24 2024: (Start)
a(n) = (7*n/2 - 7*n^2/2 - 9*floor(n/2) + (6*n+4)*floor(2*n/3) + 4*floor(n/3))/18.
a(n) = A008133(n) - A069905(n-1).
a(n) = A002620(A008611(n)). (End)

Extensions

More terms from Alois P. Heinz, Mar 19 2019

A282572 Integers that are a product of Mersenne numbers A000225, (i.e., product of numbers of the form 2^n - 1).

Original entry on oeis.org

1, 3, 7, 9, 15, 21, 27, 31, 45, 49, 63, 81, 93, 105, 127, 135, 147, 189, 217, 225, 243, 255, 279, 315, 343, 381, 405, 441, 465, 511, 567, 651, 675, 729, 735, 765, 837, 889, 945, 961, 1023, 1029, 1143, 1215, 1323, 1395, 1519, 1533, 1575, 1701, 1785, 1905, 1953, 2025, 2047, 2187, 2205, 2295, 2401
Offset: 1

Author

Andrew Ivashenko, Feb 18 2017

Keywords

Comments

Odd orders of finite abelian groups that appear as the group of units in a commutative ring (Chebolu and Lockridge, see A296241). - Jonathan Sondow, Dec 15 2017
Actually, the Chebolu and Lockridge paper states that this sequence gives all odd numbers that are possible numbers of units in a (commutative or non-commutative) ring (Ditor's theorem). Concretely, if k = (2^(e_1)-1)*(2^(e_2)-1)*...(2^(e_r)-1) is a term, let R = (F_2)^s X F_(2^(e_1)) X F_(2^(e_2)) X ... X F_(2^(e_r)) for s >= 0, then the number of units in R is k. - Jianing Song, Dec 23 2021

Examples

			63 = 1*3^3*7, 81 = 1*3^4, 93 = 1*3*31, 105 = 1*7*15, 41013 = 1*3^3*7^2*31.
		

Crossrefs

Note that A191131, A261524, A261871, and A282572 are very similar and easily confused with each other.

Programs

  • Maple
    d:= 15: # for terms < 2^d
    N:= 2^d:
    S:= {1}:
    for m from 2 to d do
      r:= 2^m-1;
      k:= ilog[r](N);
      V:= S;
      for i from 1 to k do
        V:= select(`<`, map(`*`, V, r), N);
        S:= S union V
      od;
    od:
    sort(convert(S, list)); # Ridouane Oudra, Sep 14 2021
  • Mathematica
    lmt = 2500; a = b = Array[2^# - 1 &, Floor@ Log2@ lmt]; k = 2; While[k < Length@ a, e = 1; While[e < Floor@ Log[ a[[k]], lmt], b = Union@ Join[b, Select[ a[[k]]^e*b, # < 1 + lmt &]]; e++]; k++]; b (* Robert G. Wilson v, Feb 23 2017 *)
  • PARI
    forstep(x=1,1000000,2, t=x; forstep(n=20,2,-1, m=2^n-1; while(t%m==0, t=t\m)); if(t==1, print1(x,","))) \\ Dmitry Petukhov, Feb 23 2017

Extensions

More terms from Michel Marcus, Feb 23 2017
Definition changed by David A. Corneth, Mar 12 2017

A282534 Integers that are powers of Mersenne numbers A000225 (i.e., of the form (2^n - 1)^m).

Original entry on oeis.org

1, 3, 7, 9, 15, 27, 31, 49, 63, 81, 127, 225, 243, 255, 343, 511, 729, 961, 1023, 2047, 2187, 2401, 3375, 3969, 4095, 6561, 8191, 16129, 16383, 16807, 19683, 29791, 32767, 50625, 59049, 65025, 65535, 117649, 131071, 177147, 250047, 261121, 262143, 524287, 531441, 759375
Offset: 1

Author

Andrew Ivashenko, Feb 18 2017

Keywords

Comments

The cardinality of the set of subsets in a multiset excluding empty subsets.

Examples

			3 = (2^2-1), 7 = (2^3-1), 9 = (2^2-1)^2, 81 = (2^2-1)^4, 1070599167 = (2^10-1)^3.
		

Crossrefs

Programs

  • Mathematica
    mx = 10^6; Union@ Flatten@ {1, #^Range[Log[#, mx]] & /@ (2^ Range[2, Log2@ mx] -1)} (* Giovanni Resta, Mar 08 2017 *)
  • PARI
    ismn(n) = n++; n == 2^valuation(n,2);
    isok(n) = ismn(n) || (ispower(n,,&m) && ismn(m)); \\ Michel Marcus, Feb 18 2017

Extensions

More terms from Michel Marcus, Feb 18 2017