cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A136382 a(n) = A136380(n)/4.

Original entry on oeis.org

6, 40, 2992, 12414272, 209257095067008, 59317480525187181808940067328, 4702813293407424109748719392353175027867348964750888938496, 29544706650695305166306664670066298727078147700457878444083332544832412373927109119211594757559616821553159371673600
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Comments

Note that each term a(n) fits into A007283(n-1) bits.

Crossrefs

a(n) = A048724(A136384(n))/2. A136383 shows the same sequence in octal base. Cf. A036284.

A136384 Quotient obtained when A136380(n)/2 is considered as a GF(2)[X]-polynomial and it is divided by (x + 1).

Original entry on oeis.org

4, 48, 3360, 14043520, 233515838757120, 65982595605873500894008888320, 5233741023536997251047595348728205456443682897303843358720, 32837130684987081672210288030183520098814938795984162933658101468543499651419210151303128996446334767341864627691520
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Comments

Note that each term a(n) fits into A007283(n-1) bits.

Crossrefs

A136385 shows the same sequence in octal base. Cf. A036284, A136380, A136382.

A136381 Sequence A136380 shown in octal base.

Original entry on oeis.org

30, 240, 27300, 275332400, 27624273321353000, 277524424264553332245513535524000, 27762724550512424245125524562733322130552452655353526564552130000, 277751305605652455261312526532424241366545132655245452272135533332224427213254552451226545102753535225125262712455250570562640000
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

Cf. A036285, A136383 (shifted two bits right), A136385.

Formula

a(n) = A007094(A136380(n)).

A036284 Periodic vertical binary vectors of Fibonacci numbers.

Original entry on oeis.org

6, 24, 1440, 5728448, 92568198012160, 26494530374406845814111659520, 2095920895719545919920115988669687683503034097906010941440, 13128614603426246034591796912897206548807135027496968025827278400248602613784037111736380004928525614173642247188480
Offset: 0

Views

Author

Antti Karttunen, Nov 01 1998

Keywords

Comments

The sequence can be also computed with a recurrence that does not explicitly refer to Fibonacci numbers. See the given Maple and C programs.
Conjecture: For n>=1, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x^3 + 1) ^ A000225(n-1). If this holds, then for n>=1, a(n) = A048720bi(A136380(n),A048723bi(9,A000225(n-1))). Conjecture 2: there is also one extra (x^1 + 1) factor present, see A136384.

Examples

			When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
it can be seen that the bits in the n-th column from right repeat after a period of A007283(n): 3, 6, 12, 24, ... (See also A001175). This sequence is formed from those bits: 011, reversed is 110, is binary for 6, thus a(0) = 6. 000110, reversed is 11000, is binary for 24, thus a(1) = 24, 000001011010, reversed is 10110100000, is binary for 1440, thus a(2) = 1440.
		

Crossrefs

Same sequence in octal base: A036285. Bits reversed: A036286. See also A136378, A136379, A136380, A136382, A136384, A037096, A037093, A000045.

Programs

  • Maple
    A036284:=proc(n) option remember; local a, b, c, i, j, k, l, s, x, y, z; if (0 = n) then (6) else a := 0; b := 0; s := 0; x := 0; y := 0; k := 3*(2^(n-1)); l := 3*(2^n); j := 0; for i from 0 to l do z := bit_i(A036284(n-1),(j)); c := (a + b + (`if`((x = y),x,(z+1))) mod 2); if(c <> 0) then s := s + (2^i); fi; a := b; b := c; x := y; y := z; j := j + 1; if(j = k) then j := 0; fi; od; RETURN(s); fi; end:
    bit_i := (x,i) -> `mod`(floor(x/(2^i)),2);
  • Mathematica
    a[n_] := Sum[Mod[Fibonacci[k]/2^n // Floor, 2]* 2^k, {k, 0, 3*2^n - 1}]; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Mar 04 2016 *)

Formula

a(n) = Sum_{k=0..A007283(n)-1} ([A000045(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function, i.e. Sum (bit n of Fibonacci(k))*(2^k), k = 0 ... (3*(2^n))-1.

Extensions

Entry revised Dec 29 2007

A136386 Quotient obtained when A037097(n) is considered as a GF(2)[X]-polynomial and it is divided by (x + 1) ^ A000225(n-1) (= A051179(n-2)).

Original entry on oeis.org

4, 8, 352, 3728, 7269662752, 761166466256046848, 390022035611646394530728097023856870592, 91600670557117582933643002658167825054614175029432880501373395030525438396928, 13417853484388319477475698658536993288839029124735549539652836318808118017743106800015257954250357092148394821846783842030516713870361254572407216621548672
Offset: 3

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

A136387 shows the same sequence in binary base. Cf. A037096, A037097, A136380, A136382, A136384.
Showing 1-5 of 5 results.