cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A136380 Quotient obtained when A036284(n) is considered as a GF(2)[X]-polynomial and it is divided by (x^3 + 1) ^ A000225(n-1).

Original entry on oeis.org

24, 160, 11968, 49657088, 837028380268032, 237269922100748727235760269312, 18811253173629696438994877569412700111469395859003555753984, 118178826602781220665226658680265194908312590801831513776333330179329649495708436476846379030238467286212637486694400
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

a(n) = 4*A136382(n) = 2*A048724(A136384(n)). A136381 shows the same sequence in octal base. Cf. A036284.

A036285 Sequence A036284 written in octal.

Original entry on oeis.org

6, 30, 2640, 25664300, 2503026643656400, 25315703023056664357316564563000, 2527515731736303020414563050266643413731571505656462723056364000, 25246137277231573150136315064303020122720413505630571426364566664342075141145731573675057360256564674414627536305631724050230000
Offset: 0

Views

Author

Antti Karttunen, Nov 01 1998

Keywords

Crossrefs

Formula

a(n) = A007094(A036284(n)).

Extensions

Entry revised Dec 29 2007

A136378 Number of distinct irreducible polynomials dividing A036284(n), when it is considered as a GF(2)[X]-polynomial.

Original entry on oeis.org

2, 2, 3, 4, 5, 5, 5, 7, 7, 10, 15, 10, 10, 12, 15, 11
Offset: 0

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

a(n) = A091221(A036284(n)).

A136379 Number of irreducible polynomials (counted with multiplicity) dividing A036284(n), when it is considered as a GF(2)[X]-polynomial.

Original entry on oeis.org

2, 4, 9, 17, 25, 42, 76, 143, 273, 533, 1052, 2072, 4122, 8221, 16417, 32799
Offset: 0

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

a(n) = A091222(A036284(n)).

A037093 "Sloping binary representation" of Fibonacci numbers, slope = +1.

Original entry on oeis.org

0, 1, 3, 14, 57, 229, 916, 7761, 29567, 117474, 469113, 3973641, 15138352, 60146777, 240187355, 2070207870, 7733090689, 30791909229, 260408711716, 991495872825, 3942106110215, 15739612088946, 133333733918417
Offset: 0

Views

Author

Antti Karttunen, Jan 28 1999

Keywords

Examples

			When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
and one starts collecting their bits from column-0 to SW-direction (from the least to the most significant end), one gets 000... (0), ...00001 (1), ...00011 (3), ...001110 (14), etc. (See A102370 for similar transformation done on nonnegative integers).
		

Crossrefs

Same sequence in octal: A037098. Cf. also: A102370, A000045, A037094-A037095, A036284.

Formula

a(n) := Sum(bit_n(A000045(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
In practice, n can be used as an upper limit instead of infinity.

Extensions

Entry revised Dec 29 2007

A037096 Periodic vertical binary vectors computed for powers of 3: a(n) = Sum_{k=0 .. (2^n)-1} (floor((3^k)/(2^n)) mod 2) * 2^k.

Original entry on oeis.org

1, 2, 0, 204, 30840, 3743473440, 400814250895866480, 192435610587299441243182587501623263200, 2911899996313975217187797869354128351340558818020188112521784134070351919360
Offset: 0

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Comments

This sequence can be also computed with a recurrence that does not explicitly refer to 3^n. See the C program.
Conjecture: For n >= 3, each term a(n), when considered as a GF(2)[X] polynomial, is divisible by the GF(2)[X] polynomial (x + 1) ^ A055010(n-1). If this holds, then for n >= 3, a(n) = A048720(A136386(n), A048723(3,A055010(n-1))).

Examples

			When powers of 3 are written in binary (see A004656), under each other as:
  000000000001 (1)
  000000000011 (3)
  000000001001 (9)
  000000011011 (27)
  000001010001 (81)
  000011110011 (243)
  001011011001 (729)
  100010001011 (2187)
it can be seen that the bits in the n-th column from the right can be arranged in periods of 2^n: 1, 2, 4, 8, ... This sequence is formed from those bits: 1, is binary for 1, thus a(0) = 1. 01, reversed is 10, which is binary for 2, thus a(1) = 2, 0000 is binary for 0, thus a(2)=0, 000110011, reversed is 11001100 = A007088(204), thus a(3) = 204.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.

Crossrefs

Cf. A036284, A037095, A037097, A136386 for related sequences.
Cf. also A004642, A265209, A265210 (for 2^n written in base 3).

Programs

  • Maple
    a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n))-1);
    bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

Formula

a(n) = Sum_{k=0 .. A000225(n)} (floor(A000244(k)/(2^n)) mod 2) * 2^k.
Other identities and observations:
For n >= 2, a(n) = A000215(n-1)*A037097(n) = A048720(A037097(n), A048723(3, A000079(n-1))).

Extensions

Entry revised by Antti Karttunen, Dec 29 2007
Name changed and the example corrected by Antti Karttunen, Dec 05 2015

A136382 a(n) = A136380(n)/4.

Original entry on oeis.org

6, 40, 2992, 12414272, 209257095067008, 59317480525187181808940067328, 4702813293407424109748719392353175027867348964750888938496, 29544706650695305166306664670066298727078147700457878444083332544832412373927109119211594757559616821553159371673600
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Comments

Note that each term a(n) fits into A007283(n-1) bits.

Crossrefs

a(n) = A048724(A136384(n))/2. A136383 shows the same sequence in octal base. Cf. A036284.

A136384 Quotient obtained when A136380(n)/2 is considered as a GF(2)[X]-polynomial and it is divided by (x + 1).

Original entry on oeis.org

4, 48, 3360, 14043520, 233515838757120, 65982595605873500894008888320, 5233741023536997251047595348728205456443682897303843358720, 32837130684987081672210288030183520098814938795984162933658101468543499651419210151303128996446334767341864627691520
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Comments

Note that each term a(n) fits into A007283(n-1) bits.

Crossrefs

A136385 shows the same sequence in octal base. Cf. A036284, A136380, A136382.

A136386 Quotient obtained when A037097(n) is considered as a GF(2)[X]-polynomial and it is divided by (x + 1) ^ A000225(n-1) (= A051179(n-2)).

Original entry on oeis.org

4, 8, 352, 3728, 7269662752, 761166466256046848, 390022035611646394530728097023856870592, 91600670557117582933643002658167825054614175029432880501373395030525438396928, 13417853484388319477475698658536993288839029124735549539652836318808118017743106800015257954250357092148394821846783842030516713870361254572407216621548672
Offset: 3

Views

Author

Antti Karttunen, Dec 29 2007

Keywords

Crossrefs

A136387 shows the same sequence in binary base. Cf. A037096, A037097, A136380, A136382, A136384.

A037097 Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).

Original entry on oeis.org

0, 12, 120, 57120, 93321840, 10431955353116229600, 8557304989566294213168677685339060480, 102743047168201563425402150421568484707810385382513037790885688657488312400960
Offset: 2

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Comments

Conjecture: For n>=3, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x + 1) ^ A000225(n-1) (= A051179(n-2)). If this holds, then for n>=3, a(n) = A048720bi(A136386(n),A048723bi(3,A000225(n-1))) = A048720bi(A136386(n),A051179(n-2)).

Examples

			When powers of 3 are written in binary (see A004656), under each other as:
000000000001 (1)
000000000011 (3)
000000001001 (9)
000000011011 (27)
000001010001 (81)
000011110011 (243)
001011011001 (729)
100010001011 (2187)
it can be seen that, starting from the column 2 from the right, the bits in the n-th column can be arranged in periods of 2^(n-1): 4, 8, ... This sequence is formed from those bits: 0011, reversed is 11100, which is binary for 12, thus a(3) = 12, 00011110, reversed is 011110000, which is binary for 120, thus a(4) = 120.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.

Crossrefs

a(n) = floor(A037096(n)/(2^(2^(n-1)))). See also A036284, A136386.

Programs

  • Maple
    a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n-1))-1);
    bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

Formula

a(n) = Sum_{k=0..A000225(n-1)} ([A000244(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function.

Extensions

Entry revised Dec 29 2007
Showing 1-10 of 18 results. Next