A136380
Quotient obtained when A036284(n) is considered as a GF(2)[X]-polynomial and it is divided by (x^3 + 1) ^ A000225(n-1).
Original entry on oeis.org
24, 160, 11968, 49657088, 837028380268032, 237269922100748727235760269312, 18811253173629696438994877569412700111469395859003555753984, 118178826602781220665226658680265194908312590801831513776333330179329649495708436476846379030238467286212637486694400
Offset: 1
Original entry on oeis.org
6, 30, 2640, 25664300, 2503026643656400, 25315703023056664357316564563000, 2527515731736303020414563050266643413731571505656462723056364000, 25246137277231573150136315064303020122720413505630571426364566664342075141145731573675057360256564674414627536305631724050230000
Offset: 0
Entry revised Dec 29 2007
A136378
Number of distinct irreducible polynomials dividing A036284(n), when it is considered as a GF(2)[X]-polynomial.
Original entry on oeis.org
2, 2, 3, 4, 5, 5, 5, 7, 7, 10, 15, 10, 10, 12, 15, 11
Offset: 0
A136379
Number of irreducible polynomials (counted with multiplicity) dividing A036284(n), when it is considered as a GF(2)[X]-polynomial.
Original entry on oeis.org
2, 4, 9, 17, 25, 42, 76, 143, 273, 533, 1052, 2072, 4122, 8221, 16417, 32799
Offset: 0
A037093
"Sloping binary representation" of Fibonacci numbers, slope = +1.
Original entry on oeis.org
0, 1, 3, 14, 57, 229, 916, 7761, 29567, 117474, 469113, 3973641, 15138352, 60146777, 240187355, 2070207870, 7733090689, 30791909229, 260408711716, 991495872825, 3942106110215, 15739612088946, 133333733918417
Offset: 0
When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
and one starts collecting their bits from column-0 to SW-direction (from the least to the most significant end), one gets 000... (0), ...00001 (1), ...00011 (3), ...001110 (14), etc. (See A102370 for similar transformation done on nonnegative integers).
Entry revised Dec 29 2007
A037096
Periodic vertical binary vectors computed for powers of 3: a(n) = Sum_{k=0 .. (2^n)-1} (floor((3^k)/(2^n)) mod 2) * 2^k.
Original entry on oeis.org
1, 2, 0, 204, 30840, 3743473440, 400814250895866480, 192435610587299441243182587501623263200, 2911899996313975217187797869354128351340558818020188112521784134070351919360
Offset: 0
When powers of 3 are written in binary (see A004656), under each other as:
000000000001 (1)
000000000011 (3)
000000001001 (9)
000000011011 (27)
000001010001 (81)
000011110011 (243)
001011011001 (729)
100010001011 (2187)
it can be seen that the bits in the n-th column from the right can be arranged in periods of 2^n: 1, 2, 4, 8, ... This sequence is formed from those bits: 1, is binary for 1, thus a(0) = 1. 01, reversed is 10, which is binary for 2, thus a(1) = 2, 0000 is binary for 0, thus a(2)=0, 000110011, reversed is 11001100 = A007088(204), thus a(3) = 204.
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
-
a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n))-1);
bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
Original entry on oeis.org
6, 40, 2992, 12414272, 209257095067008, 59317480525187181808940067328, 4702813293407424109748719392353175027867348964750888938496, 29544706650695305166306664670066298727078147700457878444083332544832412373927109119211594757559616821553159371673600
Offset: 1
A136384
Quotient obtained when A136380(n)/2 is considered as a GF(2)[X]-polynomial and it is divided by (x + 1).
Original entry on oeis.org
4, 48, 3360, 14043520, 233515838757120, 65982595605873500894008888320, 5233741023536997251047595348728205456443682897303843358720, 32837130684987081672210288030183520098814938795984162933658101468543499651419210151303128996446334767341864627691520
Offset: 1
A136386
Quotient obtained when A037097(n) is considered as a GF(2)[X]-polynomial and it is divided by (x + 1) ^ A000225(n-1) (= A051179(n-2)).
Original entry on oeis.org
4, 8, 352, 3728, 7269662752, 761166466256046848, 390022035611646394530728097023856870592, 91600670557117582933643002658167825054614175029432880501373395030525438396928, 13417853484388319477475698658536993288839029124735549539652836318808118017743106800015257954250357092148394821846783842030516713870361254572407216621548672
Offset: 3
A037097
Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).
Original entry on oeis.org
0, 12, 120, 57120, 93321840, 10431955353116229600, 8557304989566294213168677685339060480, 102743047168201563425402150421568484707810385382513037790885688657488312400960
Offset: 2
When powers of 3 are written in binary (see A004656), under each other as:
000000000001 (1)
000000000011 (3)
000000001001 (9)
000000011011 (27)
000001010001 (81)
000011110011 (243)
001011011001 (729)
100010001011 (2187)
it can be seen that, starting from the column 2 from the right, the bits in the n-th column can be arranged in periods of 2^(n-1): 4, 8, ... This sequence is formed from those bits: 0011, reversed is 11100, which is binary for 12, thus a(3) = 12, 00011110, reversed is 011110000, which is binary for 120, thus a(4) = 120.
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
-
a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n-1))-1);
bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
Entry revised Dec 29 2007
Showing 1-10 of 18 results.
Comments