cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A122095 Primes p for which 8*p+1 divides 2^p-1.

Original entry on oeis.org

11, 29, 179, 239, 431, 761, 857, 941, 1367, 1667, 1871, 1877, 2411, 2837, 3041, 3119, 3329, 3347, 3767, 4289, 5021, 5087, 5231, 5261, 5717, 5861, 6449, 6917, 6959, 7079, 7211, 7919, 8429, 8741, 8867, 9341, 9461, 9851, 10211, 10979, 12107, 12437, 12479
Offset: 1

Views

Author

J. Lowell, Oct 17 2006

Keywords

Comments

The first 962 terms, all those with n<500000, are also in A023228. - R. J. Mathar, Oct 20 2006
All terms are in A023228, i.e., such that 8p+1 is prime, since a divisor of 8p+1 would also divide M(p)=A000225(p) and thus be of the form 2kp+1, but it is easily checked that 8p+1 cannot be a multiple of 2p+1 (nor of 4p+1 or 6p+1, of course). - M. F. Hasler, Mar 21 2011

Examples

			29 is in this sequence because 2^29-1 is divisible by 8 * 29 + 1 = 233.
		

Crossrefs

Programs

  • Maple
    isA122095 := proc(n) RETURN( isprime(n) and ( (2^n-1) mod (8*n+1)) = 0 ) ; end: n := 1 : for a from 2 to 500000 do if isA122095(a) then print(n,a) ; n := n+1 ; fi ; od ; # R. J. Mathar, Oct 20 2006
  • Mathematica
    Select[Prime[Range[1500]],Divisible[2^#-1,8#+1]&] (* Harvey P. Dale, Dec 18 2012 *)
    Select[Prime[Range[1500]],PowerMod[2,#,8#+1]==1&] (* Harvey P. Dale, May 28 2015 *)
  • PARI
    forprime( p=1,1e4, Mod(2,p*8+1)^p-1 || print1(p, ", "))

Extensions

More terms from R. J. Mathar, Oct 20 2006

A188133 Primes p such that 10p+1 divides 2^p-1.

Original entry on oeis.org

43, 487, 547, 571, 883, 1459, 1663, 1723, 2539, 3319, 3511, 4903, 5107, 5431, 6199, 6367, 8011, 8599, 9007, 9391, 9511, 10111, 11119, 11959, 12379, 12703, 13291, 13339, 13999, 14083, 14551, 14767, 15187, 15319, 15859, 15991, 16183, 16603, 16747, 17659, 18427, 19699
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2011

Keywords

Comments

It is known that divisors of M(p)=2^p-1 are of the form 2kp+1. For k=1, these are the Lucasian primes A002515, for k=2 there are no such divisors, for k=3 these divisors are listed in A188130 and for k=4 in A122095.
The equivalent sequence of prime indices is 14, 93, 101, 105, 153, 232, 261, 269, ....
If k == 2 (mod 4), there are no such divisors in general and here there are no smaller k's than k = 5. - Karl-Heinz Hofmann, Jan 27 2022

Crossrefs

Cf. A002515 (k = 1), A188130 (k = 3), A122095 (k = 4), A350702 (k = 7).

Programs

  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && PowerMod[2, #, 10# + 1] == 1 &] (* Amiram Eldar, Nov 13 2019 *)
    Select[Prime[Range[2500]],PowerMod[2,#,10#+1]==1&] (* Harvey P. Dale, Dec 08 2024 *)
  • PARI
    forprime(p=1,1e5, Mod(2,p*10+1)^p-1 || print1(p", "))
    
  • Python
    from sympy import sieve
    print([p for p in sieve[1:10000] if pow(2,p,10*p+1) == 1])
    # Karl-Heinz Hofmann, Jan 27 2022

Formula

{p = A000040(i): 10*p+1 | A001348(i)}. - R. J. Mathar, Mar 21 2011

A350702 Primes p such that 14*p + 1 divides 2^p - 1.

Original entry on oeis.org

929, 1433, 2393, 2609, 2657, 4373, 4793, 6029, 7529, 10133, 10433, 10949, 10973, 13049, 13109, 16829, 18869, 20873, 22349, 23417, 24137, 26717, 27737, 27893, 28433, 28517, 30977, 33809, 33857, 37217, 38189, 38237, 39209, 39749, 41453, 41813, 42569, 43313, 43613
Offset: 1

Views

Author

Karl-Heinz Hofmann, Jan 27 2022

Keywords

Comments

Known divisors of Mersenne(p) (2^p-1 or Mp for short) are of the form 2*k*p+1. See crossrefs for other k's. If k == 2 (mod 4), there are no such divisors in general. Here k is 14/2 = 7.

Examples

			See LINKS for example of a(13).
		

Crossrefs

Cf. A002515 (k = 1), A188130 (k = 3), A122095 (k = 4), A188133 (k = 5).

Programs

  • Mathematica
    Select[Range[45000], PrimeQ[#] && PowerMod[2, #, 14*# + 1] == 1 &] (* Amiram Eldar, Jan 27 2022 *)
  • PARI
    forprime(p=1, 1e6, if (Mod(2, p*14+1)^p==1, print1(p,", ")))
    
  • Python
    from sympy import sieve
    print([p for p in sieve[1:1000000] if pow(2, p, 14*p+1) == 1])

Formula

{p = A000040(i): 14*p+1 | A001348(i)}.

A038844 Numbers k for which 6*k+1 divides 2^k-1.

Original entry on oeis.org

5, 21, 37, 72, 73, 76, 100, 121, 153, 221, 233, 237, 245, 276, 288, 292, 296, 300, 305, 333, 336, 341, 348, 352, 357, 380, 381, 397, 445, 448, 461, 465, 472, 492, 545, 557, 565, 576, 577, 601, 605, 637, 648, 657, 676, 688, 692, 696, 737, 752, 753, 761, 776
Offset: 1

Views

Author

Keywords

Comments

Apart from 5, all terms are in A045762, numbers k such that 2^k-1 is not prime. - Michel Marcus, Nov 12 2014
6*k + 1 is not necessarily a prime for k being a term of this sequence. - Jianing Song, Jun 20 2025

Examples

			For n=5, 2^5-1=31 is divisible by 6*5+1=31.
		

Crossrefs

Cf. A045762, A188130 (subsequence of primes).

Programs

  • Mathematica
    Select[Range[800],PowerMod[2,#,6#+1]==1&] (* Harvey P. Dale, Oct 24 2017 *)
  • PARI
    select( {is_A038844(n)=Mod(2,n*6+1)^n==1}, [1..999]) \\ M. F. Hasler, Aug 17 2021

Extensions

More terms from Michel Marcus, Nov 12 2014

A188131 Primes p == 1 (mod 4) such that 6p+1 is prime.

Original entry on oeis.org

5, 13, 17, 37, 61, 73, 101, 137, 173, 181, 233, 241, 257, 277, 293, 313, 373, 397, 461, 557, 577, 593, 601, 641, 653, 661, 761, 773, 797, 853, 937, 941, 1013, 1033, 1061, 1117, 1193, 1201, 1321, 1361, 1381, 1433, 1453, 1481, 1553, 1613, 1693, 1733, 1777, 1873, 1973, 1993
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2011

Keywords

Comments

Contains A188130 as a subsequence.

Crossrefs

Cf. A188130.

Programs

  • Mathematica
    Select[Range[1, 2000, 4], PrimeQ[#] && PrimeQ[6# + 1] &] (* Amiram Eldar, Nov 13 2019 *)
  • PARI
    forprime(p=1,1e5, p%4==1 & isprime(p*6+1) & print1(p", "))

A350703 a(n) is the least integer k such that (2*n*k+1) | (2^k-1).

Original entry on oeis.org

3, 18, 5, 9, 15, 50, 40, 16, 7, 156, 60, 25, 180, 102, 113, 81, 10, 50, 29, 159, 51, 56, 24, 36, 47, 90, 337, 72, 55, 106, 33, 102, 780, 28, 117, 25, 155, 540, 60, 104, 223, 1012, 168, 180, 91, 540, 3132, 47, 510, 412, 154, 45, 80, 432, 201, 36, 90, 144, 97, 53, 279, 880
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 03 2022

Keywords

Comments

The formula 2nk+1 is used to find trivial factors of Mersenne(p). Here it is used for all exponents (prime exponents and not prime exponents).
Mersenne primes of A000043 can be found in this sequence too (except for 2). E.g.: a(1, 3, 9, 315, 3855, 13797) = A000043(2..7).
If n mod 4 = 2 then a(n) must be composite.

Examples

			a(5) = 15: 2^15 - 1 = 32767; 2*5*15 + 1 = 151; 32767 mod 151 = 0, and there are no numbers < 15 which satisfy the requirement for n = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[PowerMod[2, k, 2*n*k + 1] != 1, k++]; k];  Array[a, 62] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = my(k=1); while (Mod(2, 2*n*k+1)^k != 1, k++); k; \\ Michel Marcus, Feb 03 2022
  • Python
    def A350703(k,expo):
        while pow(2, expo, 2*k*expo+1) != 1: expo += 1
        return expo
    print([A350703(k,1) for k in range(1, 63)])
    
Showing 1-6 of 6 results.