cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A136630 Triangular array: T(n,k) counts the partitions of the set [n] into k odd sized blocks.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 0, 10, 0, 1, 0, 0, 16, 0, 20, 0, 1, 0, 1, 0, 91, 0, 35, 0, 1, 0, 0, 64, 0, 336, 0, 56, 0, 1, 0, 1, 0, 820, 0, 966, 0, 84, 0, 1, 0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1, 0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1, 0, 0, 1024, 0, 87296, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2008

Keywords

Comments

For partitions into blocks of even size see A156289.
Essentially the unsigned matrix inverse of triangle A121408.
From Peter Bala, Jul 28 2014: (Start)
Define a polynomial sequence x_(n) by setting x_(0) = 1 and for n = 1,2,... setting x_(n) = x*(x + n - 2)*(x + n - 4)*...*(x + n - 2*(n - 1)). Then this table is the triangle of connection constants for expressing the monomial polynomials x^n in terms of the basis x_(k), that is, x^n = sum {k = 0..n} T(n,k)*x_(k) for n = 0,1,2,.... An example is given below.
Let M denote the lower unit triangular array A119467 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle, omitting the first row and column, equals the infinite matrix product M(0)*M(1)*M(2)*.... (End)
Also the Bell transform of A000035(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,   1;
  0, 1,   0,    1;
  0, 0,   4,    0,    1;
  0, 1,   0,   10,    0,     1;
  0, 0,  16,    0,   20,     0,    1;
  0, 1,   0,   91,    0,    35,    0,    1;
  0, 0,  64,    0,  336,     0,   56,    0,   1;
  0, 1,   0,  820,    0,   966,    0,   84,   0,   1;
  0, 0, 256,    0, 5440,     0, 2352,    0, 120,   0, 1;
  0, 1,   0, 7381,    0, 24970,    0, 5082,   0, 165, 0, 1;
T(5,3) = 10. The ten partitions of the set [5] into 3 odd-sized blocks are
(1)(2)(345), (1)(3)(245), (1)(4)(235), (1)(5)(234), (2)(3)(145),
(2)(4)(135), (2)(5)(134), (3)(4)(125), (3)(5)(124), (4)(5)(123).
Connection constants: Row 5 = [0,1,0,10,0,1]. Hence, with the polynomial sequence x_(n) as defined in the Comments section we have x^5 = x_(1) + 10*x_(3) + x_(5) = x + 10*x*(x+1)*(x-1) + x*(x+3)*(x+1)*(x-1)*(x-3).
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 225-226.

Crossrefs

Cf. A121408; A136631 (antidiagonal sums), A003724 (row sums), A136632; A002452 (column 3), A002453 (column 5); A008958 (central factorial triangle), A156289. A185690, A196776.

Programs

  • Maple
    A136630 := proc (n, k) option remember; if k < 0 or n < k then 0 elif k = n then 1 else procname(n-2, k-2) + k^2*procname(n-2, k) end if end proc: seq(seq(A136630(n, k), k = 1 .. n), n = 1 .. 12); # Peter Bala, Jul 27 2014
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (n+1) mod 2, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := Coefficient[ x^k/Product[ 1 - (2*j + k - 2*Quotient[k, 2])^2*x^2, {j, 0, k/2}] + x*O[x]^n, x, n]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2013, after Pari *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 13;
    M = BellMatrix[Mod[#+1, 2]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    {T(n,k)=polcoeff(x^k/prod(j=0,k\2,1-(2*j+k-2*(k\2))^2*x^2 +x*O(x^n)),n)}

Formula

G.f. for column k: x^k/Product_{j=0..floor(k/2)} (1 - (2*j + k-2*floor(k/2))^2 * x^2).
G.f. for column 2*k: x^(2*k)/Product_{j=0..k} (1 - (2*j)^2*x^2).
G.f. for column 2*k+1: x^(2*k+1)/Product_{j=0..k} (1 - (2*j+1)^2*x^2).
From Peter Bala, Feb 21 2011 (Start)
T(n,k) = 1/(2^k*k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j-k)^n,
Recurrence relation T(n+2,k) = T(n,k-2) + k^2*T(n,k).
E.g.f.: F(x,z) = exp(x*sinh(z)) = Sum_{n>=0} R(n,x)*z^n/n! = 1 + x*z + x^2*z^2/2! + (x+x^3)*z^3/3! + ....
The row polynomials R(n,x) begin
R(1,x) = x
R(2,x) = x^2
R(3,x) = x+x^3.
The e.g.f. F(x,z) satisfies the partial differential equation d^2/dz^2(F) = x^2*F + x*F' + x^2*F'' where ' denotes differentiation w.r.t. x.
Hence the row polynomials satisfy the recurrence relation R(n+2,x) = x^2*R(n,x) + x*R'(n,x) + x^2*R''(n,x) with R(0,x) = 1.
The recurrence relation for T(n,k) given above follows from this.
(End)
For the corresponding triangle of ordered partitions into odd-sized blocks see A196776. Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of exp(t*M) lists the row polynomials for the present triangle. - Peter Bala, Oct 06 2011
Row generating polynomials equal D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A196776. - Peter Bala, Dec 06 2011
From Peter Bala, Jul 28 2014: (Start)
E.g.f.: exp(t*sinh(x)) = 1 + t*x + t^2*x^2/2! + (t + t^3)*x^3/3! + ....
Hockey-stick recurrence: T(n+1,k+1) = Sum_{i = 0..floor((n-k)/2)} binomial(n,2*i)*T(n-2*i,k).
Recurrence equation for the row polynomials R(n,t):
R(n+1,t) = t*Sum_{k = 0..floor(n/2)} binomial(n,2*k)*R(n-2*k,t) with R(0,t) = 1. (End)

A008958 Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Wesley Transue_, Jan 21 2012: (Start)
Triangle begins:
  1;
  1,   1;
  1,  10,      1;
  1,  35,     91,       1;
  1,  84,    966,     820,         1;
  1, 165,   5082,   24970,      7381,         1;
  1, 286,  18447,  273988,    631631,     66430,         1;
  1, 455,  53053, 1768195,  14057043,  15857205,    597871,       1;
  1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Columns include A000447. Right-hand columns include A002452, A002453.

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)

Formula

G.f. of i-th right-hand column is x/Product_{j=1..i+1} (1 - (2j-1)^2*x).

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A160562 Triangle of scaled central factorial numbers, T(n,k) = A008958(n,n-k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 91, 35, 1, 1, 820, 966, 84, 1, 1, 7381, 24970, 5082, 165, 1, 1, 66430, 631631, 273988, 18447, 286, 1, 1, 597871, 15857205, 14057043, 1768195, 53053, 455, 1, 1, 5380840, 397027996, 704652312, 157280838, 8187608, 129948, 680, 1
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2009

Keywords

Comments

This is table 4 on page 12 of Gelineau and Zeng, read downwards by columns.
Reversing rows gives A008958.
Apparently the table can also be obtained by deleting each second row and column of A136630.

Examples

			Triangle starts:
  1;
  1,     1;
  1,    10,      1;
  1,    91,     35,      1;
  1,   820,    966,     84,     1;
  1,  7381,  24970,   5082,   165,   1;
  1, 66430, 631631, 273988, 18447, 286, 1;
  ...
		

Crossrefs

Cf. A002452 (column k=1), A002453 (column k=2), A000447 (right column k=n-1), A185375 (right column k=n-2).

Programs

  • Maple
    A160562 := proc(n,k) npr := 2*n+1 ; kpr := 2*k+1 ; sinh(t*sinh(x)) ; npr!*coeftayl(%,x=0,npr) ; coeftayl(%,t=0,kpr) ; end: seq(seq(A160562(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - m)*(2m + 1)^(2n + 1)*Binomial[2k, k + m]/(k + m + 1), {m, 0, k}]/(4^k*(2k)!);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)

Formula

T(n,k) = (1/((2*k)!*4^k)) * Sum_{m=0..k} (-1)^(k-m)*A039599(k,m)*(2*m+1)^(2*n). - Werner Schulte, Nov 01 2015
T(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1) = ((2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sinh(x)^(2*k+1). Note that sin(x)^(2*k+1) = (Sum_{i=0..k} (-1)^i*binomial(2*k+1,k-i)*sin((2*i+1)*x))/(2^(2*k)). - Jianing Song, Oct 29 2023

Extensions

More terms from R. J. Mathar, Sep 09 2009

A166984 a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.

Original entry on oeis.org

1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
Offset: 0

Views

Author

Klaus Brockhaus, Oct 26 2009

Keywords

Comments

Partial sums of A166965.
First differences of A006105. - Klaus Purath, Oct 15 2020

Crossrefs

Programs

  • Magma
    [n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
    
  • Mathematica
    LinearRecurrence[{20,-64},{1,20},30] (* Harvey P. Dale, Jul 04 2012 *)
  • PARI
    a(n) = (4*16^n - 4^n)/3 \\ Charles R Greathouse IV, Jun 21 2022
    
  • SageMath
    A166984=BinaryRecurrenceSequence(20,-64,1,20)
    [A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = (4*16^n - 4^n)/3.
G.f.: 1/((1-4*x)*(1-16*x)).
Limit_{n -> oo} a(n)/a(n-1) = 16.
a(n) = A115490(n+1)/3.
Sum_{n>=0} a(n) x^(2*n+4)/(2*n+4)! = ( sinh(x) )^4/4!. - Robert A. Russell, Apr 03 2013
From Klaus Purath, Oct 15 2020: (Start)
a(n) = A002450(n+1)*(A002450(n+2) - A002450(n))/5.
a(n) = (A083584(n+1)^2 - A083584(n)^2)/80. (End)
a(n) = (A079598(n) - A000302(n))/24. - César Aguilera, Jun 21 2022
a(n) = 16*a(n-1) + 4^n with a(0) = 1. - Nadia Lafreniere, Aug 08 2022
E.g.f.: (4/3)*exp(10*x)*sinh(6*x + log(2)). - G. C. Greubel, Oct 02 2024

A381512 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = (2*n+k)!/k! * [x^(2*n+k)] sinh(x)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 16, 1, 0, 1, 20, 91, 64, 1, 0, 1, 35, 336, 820, 256, 1, 0, 1, 56, 966, 5440, 7381, 1024, 1, 0, 1, 84, 2352, 24970, 87296, 66430, 4096, 1, 0, 1, 120, 5082, 90112, 631631, 1397760, 597871, 16384, 1, 0, 1, 165, 10032, 273988, 3331328, 15857205, 22368256, 5380840, 65536, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, May 11 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,       1,        1, ...
  0, 1,    4,    10,      20,       35, ...
  0, 1,   16,    91,     336,      966, ...
  0, 1,   64,   820,    5440,    24970, ...
  0, 1,  256,  7381,   87296,   631631, ...
  0, 1, 1024, 66430, 1397760, 15857205, ...
		

Crossrefs

Columns k=0..7 give A000007, A000012, A000302, A002452(n+1), A166984, A002453, 4^n * A002451(n), A381513.
Main diagonal gives A383837.

Programs

  • PARI
    a(n, k) = (2*n+k)!/k!*polcoef(sinh(x+x*O(x^(2*n+k)))^k, 2*n+k);

Formula

G.f. of column k: 1/Product_{j=0..floor(k/2)} (1 - (k-2*j)^2*x).
A(n,k) = k^2 * A(n-1,k) + A(n,k-2) for k > 1.
A(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^j * (k-2*j)^(2*n+k) * binomial(k,j).
Showing 1-5 of 5 results.