A367109 Triangle of number of interval-closed sets T(m,n) in the product of two chains [m]x[n], for m <= n, read by rows.
2, 4, 13, 7, 33, 114, 11, 71, 321, 1146, 16, 136, 781, 3449, 12578, 22, 239, 1702, 9115, 39614, 146581, 29, 393, 3403, 21743, 111063, 477097, 1784114, 37, 613, 6349, 47737, 283243, 1398211, 5953639, 22443232, 46, 916, 11191, 97861, 667684, 3754186, 18060127, 76372470, 289721772, 56, 1321, 18811, 189377, 1472692, 9358669
Offset: 1
Examples
The initial rows of the triangle are: [1] 2 [2] 4, 13 [3] 7, 33, 114 [4] 11, 71, 321, 1146 [5] 16, 136, 781, 3449, 12578 [6] 22, 239, 1702, 9115, 39614, 146581 [7] 29, 393, 3403, 21743, 111063, 477097, 1784114 [8] 37, 613, 6349, 47737, 283243, 1398211, 5953639, 22443232 [9] 46, 916, 11191, 97861, 667684, 3754186, 18060127, 76372470, 289721772 The T(1,1) = 2 through T(3,1) = 7 interval-closed sets: {} {} {} {} {[1,1]} {[1,1]} {[1,1]} {[1,1]} {[2,1]} {[1,2]} {[2,1]} {[1,1], [2,1]} {[2,1]} {[3,1]} {[2,2]} {[1,1], [2,1]} {[1,1], [1,2]} {[2,1], [3,1]} {[1,1], [2,1]} {[1,1], [2,1], [3,1]} {[1,2], [2,1]} {[1,2], [2,2]} {[2,1], [2,2]} {[1,1], [1,2], [2,1]} {[1,2], [2,1], [2,2]} {[1,1,], [1,2], [2,1], [2,2]}
Links
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, Toggling, rowmotion, and homomesy on interval-closed sets, arXiv:2307.08520 [math.CO], 2023.
Crossrefs
Cf. A369313.
Programs
-
SageMath
ICS_count = 0 x = Posets.ProductOfChains([m, n]) for A in x.antichains_iterator(): I = x.order_ideal(A) Q = x.subposet(set(I).difference(A)) ICS_count += Q.antichains().cardinality() ICS_count
Extensions
Corrected by Nadia Lafreniere, Dec 10 2024
Comments