A281478
Central coefficients of Joffe's central differences of zero (assuming offset 0 and T(n,k) extended to 0 <= k <= n in A241171).
Original entry on oeis.org
1, 1, 126, 126720, 494053560, 5283068427000, 126301275727704000, 5896518025761483120000, 488276203972584492344880000, 66735969985432035804226510800000, 14236685931434801591697761172512160000, 4533351707244550464920840944132383960960000, 2077486542875366717627638783543223150778585600000
Offset: 0
A002456
Joffe's central differences of 0, A241171(n,n-1).
Original entry on oeis.org
0, 1, 30, 1260, 75600, 6237000, 681080400, 95351256000, 16672848192000, 3563821301040000, 914714133933600000, 277707211062240960000, 98459829376612704000000, 40319300129722902288000000, 18888041368462498071840000000, 10037644841525784689606400000000
Offset: 1
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
T:=proc(n,k) option remember;
if k = 0 or k > n then 0
elif k=1 then 1
else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
end;
[seq(T(n,n-1),n=1..30)];
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, _] = 0;
a[n_] := T[n, n-1];
Array[a, 16] (* Jean-François Alcover, Jul 03 2019 *)
A241172
Joffe's central differences of 0: A241171(n,n-2).
Original entry on oeis.org
0, 1, 126, 13230, 1580040, 227026800, 39502663200, 8266953895200, 2059096751712000, 603711328396176000, 206176565788633440000, 81229359235705480800000, 36597518579286942076800000, 18708155260191426661632000000, 10773738796571008900177536000000
Offset: 2
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
-
T:=proc(n,k) option remember;
if k = 0 or k > n then 0
elif k=1 then 1
else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
end;
[seq(T(n,n-2),n=2..30)];
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
a[n_] := T[n, n - 2]
Array[a, 15, 2] (* Jean-François Alcover, Jul 03 2019 *)
A327027
T(n, k) = (1/n) * Sum_{d|n} phi(d) * A241171(n/d, k) for n >= 1, T(0, k) = 0^k. Triangle read by rows for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 10, 30, 0, 1, 33, 315, 630, 0, 1, 102, 2646, 15120, 22680, 0, 1, 348, 21135, 263340, 1039500, 1247400, 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200, 0, 1, 4113, 1333080, 61757010, 871620750, 4937832900, 11918907000, 10216206000
Offset: 0
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 10, 30;
[4] 0, 1, 33, 315, 630;
[5] 0, 1, 102, 2646, 15120, 22680;
[6] 0, 1, 348, 21135, 263340, 1039500, 1247400;
[7] 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200;
-
A327027 := (n, k)-> `if`(n=0, 1, (1/n)*add(phi(d)*A241171(n/d, k), d=divisors(n))):
seq(seq(A327027(n,k), k=0..n), n=0..6);
-
A327027[0, k_] := 1;
A327027[n_, k_] := DivisorSum[n, EulerPhi[#] A241171[n/#, k] &] / n;
Table[A327027[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
-
# uses[DivisorTriangle from A327029, A241171]
DivisorTriangle(euler_phi, A241171, 8, lambda n: 1/n if n > 1 else 1)
A327026
a(n) = (1/n) Sum_{k=0..n} Sum_{d|n} phi(d) A241171(n/d, k) for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 4, 41, 979, 40549, 2571724, 231313681, 28007660854, 4392400716381, 866132386622878, 209744116289535001, 61192264076350570149, 21169177815206345045941, 8568352429497412897973944, 4011525608882608159230362521, 2151041235686896366408288920529
Offset: 0
-
seq(add(A327027(n, k), k=0..n), n=0..18);
-
a[n_] := Sum[A327027[n, k], {k, 0, n}]; Table[a[n], {n, 0, 16}]
A356900
a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.
Original entry on oeis.org
1, 1, 8, 154, 5552, 321616, 27325088, 3200979664, 494474723072, 97390246272256, 23820397371219968, 7083386168647642624, 2516691244849530785792, 1052914814802404260765696, 512347915163742179541659648, 286902390859642414913802102784, 183187476890368376930869730803712
Offset: 0
-
a := n -> 2^n*add(A241171(n, k)*(1/2)^k, k = 0..n):
seq(a(n), n = 0..16);
-
# Using function PtransMatrix from A269941.
def E(n, v):
eulr = lambda n: 1 / ((2 * n - 1) * (2 * n))
norm = lambda n, k: (1 / v)^n * factorial(2 * n)
P = PtransMatrix(n, eulr, norm)
return [(-1)^j * sum([v^k * P[j][k] for k in range(j + 1)]) for j in range(n)]
A356900List = lambda n: E(n, -1/2); print(A356900List(17))
# A002105List = lambda n: E(n, 1/2) returns the reduced tangent numbers A002105.
A000680
a(n) = (2n)!/2^n.
Original entry on oeis.org
1, 1, 6, 90, 2520, 113400, 7484400, 681080400, 81729648000, 12504636144000, 2375880867360000, 548828480360160000, 151476660579404160000, 49229914688306352000000, 18608907752179801056000000, 8094874872198213459360000000, 4015057936610313875842560000000
Offset: 0
For n = 2, a(2) = 6 since there are 6 functions f:[4]->[2] with size 2 preimages for both {1} and {2}. In this case, there are binomial(4, 2) = 6 ways to choose the 2 elements of [4] f maps to {1} and the 2 elements of [4] that f maps to {2}. - _Dennis P. Walsh_, Nov 17 2009
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1998.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- R. Florez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12(1) (2012), 83-96.
- M. Ghebleh, Antichains of (0, 1)-matrices through inversions, Linear Algebra and its Applications 458 (2014), 503-511.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Dennis Walsh, Counting integer functions with size-2 preimage constraints, preprint.
- Eric Weisstein's World of Mathematics, Lattice Path.
- Index to divisibility sequences
- Index entries for related partition-counting sequences
A diagonal of the triangle in
A241171.
Even bisection of column k=0 of
A097591.
-
A000680 := n->(2*n)!/(2^n);
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*n od: seq(a[n], n=0..16); # Zerinvary Lajos, Mar 08 2008
seq(product(binomial(2*n-2*k,2),k=0..n-1),n=0..16); # Dennis P. Walsh, Nov 17 2009
-
Table[Product[Binomial[2 i, 2], {i, 1, n}], {n, 0, 16}]
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[6, #] &, 17, 0] (* Robert G. Wilson v, Dec 26 2016 *)
Table[(2n)!/2^n,{n,0,20}] (* Harvey P. Dale, Sep 21 2020 *)
-
a(n) = (2*n)! / 2^n
A094088
E.g.f. 1/(2-cosh(x)) (even coefficients).
Original entry on oeis.org
1, 1, 7, 121, 3907, 202741, 15430207, 1619195761, 224061282907, 39531606447181, 8661323866026007, 2307185279184885001, 734307168916191403507, 275199311597682485597221, 119956934012963778952439407
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];g(1); # N. J. A. Sloane, Mar 28 2012
-
nn=30;Select[Range[0,nn]!CoefficientList[Series[1/(2-Cosh[x]),{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Dec 03 2012 *)
a[0]=1; a[n_] := Sum[1/2*(1+(-1)^(2*n))*Sum[((-1)^(k-j)*Binomial[k, j]*Sum[(j-2*i )^(2*n)*Binomial[j, i], {i, 0, j}])/2^j, {j, 1, k}], {k, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
-
a(n):=b(2*n+2);
b(n):=sum(((sum(((sum((j-2*i)^n*binomial(j,i),i,0,j))*(-1)^(k-j)*binomial(k,j))/2^(j),j,1,k))*((-1)^n+1))/2,k,1,n/2); /* Vladimir Kruchinin, Apr 23 2011 */
-
a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)),k,1,2*n); /* Vladimir Kruchinin, Oct 05 2012 */
-
a(n) = if (n == 0, 1, sum(k=1, n, binomial(2*n, 2*n-2*k)*a(n-k)));
-
def A094088(n) :
@CachedFunction
def intern(n) :
if n == 0 : return 1
if n % 2 != 0 : return 0
return add(intern(k)*binomial(n,k) for k in range(n)[::2])
return intern(2*n)
[A094088(n) for n in (0..14)] # Peter Luschny, Jul 14 2012
A001897
Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).
Original entry on oeis.org
1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008, Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
- Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, On Polycosecant Numbers, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer 1924, p. 27.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
-
[Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
-
b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
# Alternative :
Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
A001897_list(52); # Peter Luschny, Oct 03 2011
-
a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
-
a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
-
def A001897(n):
if n == 0:
return 1
M = (d + 1 for d in divisors(2 * n))
return prod(s for s in M if is_prime(s)) / 2
[A001897(n) for n in range(55)] # Peter Luschny, Feb 20 2016
A156289
Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.
Original entry on oeis.org
1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1
The triangle begins
n\k|..1.....2......3......4......5......6
=========================================
.1.|..1
.2.|..1.....3
.3.|..1....15.....15
.4.|..1....63....210....105
.5.|..1...255...2205...3150....945
.6.|..1..1023..21120..65835..51975..10395
..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
(12)(34)(56), (12)(35)(46), (12)(36)(45),
(13)(24)(56), (13)(25)(46), (13)(26)(45),
(14)(23)(56), (14)(25)(36), (14)(26)(35),
(15)(23)(46), (15)(24)(36), (15)(26)(34),
(16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
- L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- Richard Olu Awonusika, On Jacobi polynomials P_k(alpha, beta) and coefficients c_j^L(alpha, beta) (k >= 0, L = 5,6; 1 <= j <= L; alpha, beta > -1), The Journal of Analysis (2020).
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- J. Riordan, Letter, Jul 06 1978
2nd column variant T(n, 2)/3, for 2<=n, is
A002450.
3rd column variant T(n, 3)/15, for 3<=n, is
A002451.
-
T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
(2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
-
T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
(* alternate computation with function triangle[] defined in A257490 *)
a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
(* Hartmut F. W. Hoft, Apr 26 2015 *)
Showing 1-10 of 31 results.
Next
Comments