A338026 a(1) = 8; for n > 1, a(n) is the largest integer m such that m = ((2*x*a(n-1)) / (x+1)) - x, with x a positive nontrivial divisor of m.
8, 9, 10, 12, 15, 20, 28, 42, 66, 110, 190, 342, 630, 1190, 2278, 4422, 8646, 17030, 33670, 66822, 132900, 264758, 528034, 1053990, 2105077, 4205820, 8405840, 16803405, 33595212, 67173930, 134324628, 268616475, 537185908, 1074305622, 2148516546
Offset: 1
Keywords
Examples
a(5) = 15 = ((2*3*12) / 4) - 3 or ((2*5*12) / 6) - 5 = 15; Also 14 = ((2*2*12) / 3) - 2, but 15 is larger.
Links
- Enric Reverter i Bigas, Graphic example
Crossrefs
Cf. A209724.
Programs
-
Mathematica
w[n_] := Module[{x, p}, Max[p /. List@ToRules@Reduce[p == (2 n*x)/(x + 1) - x == x*y && x > 1 && y > 1, p, Integers]]]; n := 8; k := {n}; m = 1; While[m < 35, {AppendTo[k, w[n]], n = w[n]}; m++]; k
Comments