A255928
Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).
Original entry on oeis.org
1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
Offset: 0
-
A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
seq(A255928(n), n = 0 .. 16);
A362586
Triangle read by rows, T(n, k) = A094088(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 7, 14, 7, 121, 363, 363, 121, 3907, 15628, 23442, 15628, 3907, 202741, 1013705, 2027410, 2027410, 1013705, 202741, 15430207, 92581242, 231453105, 308604140, 231453105, 92581242, 15430207, 1619195761, 11334370327, 34003110981, 56671851635, 56671851635, 34003110981, 11334370327, 1619195761
Offset: 0
[0] 1;
[1] 1, 1;
[2] 7, 14, 7;
[3] 121, 363, 363, 121;
[4] 3907, 15628, 23442, 15628, 3907;
[5] 202741, 1013705, 2027410, 2027410, 1013705, 202741;
Original entry on oeis.org
1, 2, 28, 968, 62512, 6487712, 987533248, 207257057408, 57359688424192, 20240182500956672, 8869195638810631168, 4725115451770644482048, 3007722163880719988764672, 2254432760608214922012434432, 1965374406868398554356767244288, 1971745067277979562424894483365888
Offset: 0
A028296
Expansion of e.g.f. Gudermannian(x) = 2*arctan(exp(x)) - Pi/2.
Original entry on oeis.org
1, -1, 5, -61, 1385, -50521, 2702765, -199360981, 19391512145, -2404879675441, 370371188237525, -69348874393137901, 15514534163557086905, -4087072509293123892361, 1252259641403629865468285, -441543893249023104553682821, 177519391579539289436664789665
Offset: 0
Gudermannian(x) = x - (1/6)*x^3 + (1/24)*x^5 - (61/5040)*x^7 + (277/72576)*x^9 + ....
Gudermannian'(x) = 1/cosh(x) = (1/1!)*x^0 - (1/2!)*x^2 + (5/4!)*x^4 - (61/6!)*x^6 + (1385/8!)*x^8 + .... - _Stanislav Sykora_, Oct 07 2016
- Gradshteyn and Ryzhik, Tables, 5th ed., Section 1.490, pp. 51-52.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B45.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021.
- Filippo Callegaro and Giovanni Gaiffi, On models of the braid arrangement and their hidden symmetries, arXiv preprint arXiv:1406.1304 [math.AT], 2014.
- Karl Dilcher and Christophe Vignat, Euler and the Strong Law of Small Numbers, Amer. Math. Mnthly, 123 (May 2016), 486-490.
- Allan L. Edmonds and Steven Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 02 2013
- Guodong Liu, On congruences of Euler numbers modulo powers of two, Journal of Number Theory, Volume 128, Issue 12, December 2008, Pages 3063-3071.
- Emanuele Munarini, Two-Parameter Identities for q-Appell Polynomials, Journal of Integer Sequences, Vol. 26 (2023), Article 23.3.1.
- Niels Erik Nørlund, Vorlesungen über Differenzenrechnung, Springer 1924, p. 25.
- Joe Santmyer, Derivative Polynomials for Trigonometric and Hyperbolic Functions, Arhimede Math. J. (2023) Vol. 10, No. 2, 152-158.
- Jan W. H. Swanepoel, A Short Simple Probabilistic Proof of a Well Known Identity and the Derivation of Related New Identities Involving the Bernoulli Numbers and the Euler Numbers, Integers (2025) Vol. 25, Art. No. A50. See p. 4.
- Zhi-Hong Sun, On the further properties of {U_n}, arXiv:1203.5977v1 [math.NT], Mar 27 2012.
Absolute values are the Euler numbers
A000364.
-
A028296 := proc(n) a :=0 ; for k from 1 to 2*n+1 by 2 do a := a+(-1)^((k-1)/2)/2^k/k *add( (-1)^i *(k-2*i)^(2*n+1) *binomial(k,i), i=0..k) ; end do: a ; end proc:
seq(A028296(n),n=0..10) ; # R. J. Mathar, Apr 20 2011
-
Table[EulerE[2*n], {n, 0, 30}] (* Paul Abbott, Apr 14 2006 *)
Table[(CoefficientList[Series[1/Cosh[x],{x,0,40}],x]*Range[0,40]!)[[2*n+1]],{n,0,20}] (* Vaclav Kotesovec, Aug 04 2014*)
With[{nn=40},Take[CoefficientList[Series[Gudermannian[x],{x,0,nn}],x] Range[ 0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Feb 24 2018 *)
{1, Table[2*(-I)*PolyLog[-2*n, I], {n, 1, 12}]} // Flatten (* Peter Luschny, Aug 12 2021 *)
a[0] := 1; a[n_] := a[n] = -Sum[Binomial[2 n, 2 k] a[k], {k, 0, n - 1}]; Map[a, Range[0, 16]] (* Oliver Seipel, May 19 2024 *)
-
a(n):=sum((-1+(-1)^(k))*(-1)^((k+1)/2)/(2^(k+1)*k)*sum((-1)^i*(k-2*i)^n*binomial(k,i),i,0,k),k,1,n); /* with interpolated zeros, Vladimir Kruchinin, Apr 20 2011 */
-
a(n) = 2*imag(polylog(-2*n, I)); \\ Michel Marcus, May 30 2018
-
a(n)=eulerfrac(2*n) \\ Charles R Greathouse IV, Mar 23 2022
-
from sympy import euler
def A028296(n): return euler(n<<1) # Chai Wah Wu, Apr 16 2023
-
def A028296_list(len):
f = lambda k: x*(k+1)^2
g = 1
for k in range(len-2,-1,-1):
g = (1-f(k)/(f(k)+1/g)).simplify_rational()
return taylor(g, x, 0, len-1).list()
print(A028296_list(17))
-
def A028296(n):
shapes = ([x*2 for x in p] for p in Partitions(n))
return sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
print([A028296(n) for n in (0..16)]) # Peter Luschny, Aug 10 2015
A241171
Triangle read by rows: Joffe's central differences of zero, T(n,k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 6, 1, 30, 90, 1, 126, 1260, 2520, 1, 510, 13230, 75600, 113400, 1, 2046, 126720, 1580040, 6237000, 7484400, 1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400, 1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000, 1, 131070, 96461910, 8203431600, 196556560200, 1882311631200, 8266953895200, 16672848192000, 12504636144000
Offset: 1
Triangle begins:
1,
1, 6,
1, 30, 90,
1, 126, 1260, 2520,
1, 510, 13230, 75600, 113400,
1, 2046, 126720, 1580040, 6237000, 7484400,
1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400,
1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000,
...
From _Peter Bala_, Aug 20 2014: (Start)
Row 2: [1,6]
k Ordered set partitions of {1,2,3,4} into k blocks Number
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 {1,2,3,4} 1
2 {1,2}{3,4}, {3,4}{1,2}, {1,3}{2,4}, {2,4}{1,3}, 6
{1,4}{2,3}, {2,3}{1,4}
(End)
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- S. A. Joffe, Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 48 (1917-1920), 193-271.
Case m=2 of the polynomials defined in
A278073.
-
Flat(List([1..10],n->List([1..n],k->1/(2^(k-1))*Sum([1..k],j->(-1)^(k-j)*Binomial(2*k,k-j)*j^(2*n))))); # Muniru A Asiru, Feb 27 2019
-
T := proc(n,k) option remember;
if k > n then 0
elif k=0 then k^n
elif k=1 then 1
else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
end: # Minor edit to make it also work in the (0,0)-offset case. Peter Luschny, Sep 03 2022
for n from 1 to 12 do lprint([seq(T(n,k), k=1..n)]); od:
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; Table[T[n, k], {n, 1, 9}, {k, 1, n}] (* _Jean-François Alcover, Jul 03 2019 *)
-
@cached_function
def A241171(n, k):
if n == 0 and k == 0: return 1
if k < 0 or k > n: return 0
return (2*k^2 - k)*A241171(n - 1, k - 1) + k^2*A241171(n - 1, k)
for n in (1..6): print([A241171(n, k) for k in (1..n)]) # Peter Luschny, Sep 06 2017
A352252
Expansion of e.g.f. 1 / (1 - x * cos(x)).
Original entry on oeis.org
1, 1, 2, 3, 0, -55, -480, -3157, -15232, -16623, 898560, 16316179, 194574336, 1666248025, 5418649600, -170157839685, -5164467978240, -92955464490463, -1188910801354752, -7329026447550685, 157257042777866240, 7516793832172469481, 187200588993188069376
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x Cos[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^k Binomial[n, 2 k + 1] (2 k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^30)); Vec(serlaplace(1 / (1 - x * cos(x)))) \\ Michel Marcus, Mar 10 2022
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*I^(n-k)*a185951(n, k)); \\ Seiichi Manyama, Feb 17 2025
A210657
a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, -2, 22, -602, 30742, -2523002, 303692662, -50402079002, 11030684333782, -3077986048956602, 1066578948824962102, -449342758735568563802, 226182806795367665865622, -134065091768709178087428602, 92423044260377387363207812342, -73323347841467639992211297199002
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- Matthieu Josuat-Vergès and Jang Soo Kim, Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity, arXiv:1101.5608 [math.CO], 2011.
- Zhi-Hong Sun, On the further properties of U_n, arXiv:1203.5977 [math.NT], 2012.
-
A210657:=proc(n) option remember;
if n=0 then 1
else -2*add(binomial(2*n,2*k)*procname(n-k),k=1..floor(n)); fi;
end;
[seq(f(n),n=0..20)];
# Second program:
a := (n) -> 2*36^n*(Zeta(0,-n*2,1/6)-Zeta(0,-n*2,2/3)):
seq(a(n), n=0..15); # Peter Luschny, Mar 11 2015
-
nmax=20; Table[(CoefficientList[Series[1/(2*Cosh[x]-1), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Table[9^n EulerE[2 n, 1/3], {n, 0, 20}] (* Vladimir Reshetnikov, Jun 05 2016 *)
-
a(n)=polcoeff(sum(m=0, n, (2*m)!*(-x)^m/prod(k=1, m, 1-k^2*x +x*O(x^n)) ), n)
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Sep 17 2012
A243664
Number of 3-packed words of degree n.
Original entry on oeis.org
1, 1, 21, 1849, 426405, 203374081, 173959321557, 242527666641289, 514557294036701349, 1577689559404884503761, 6714435826042791310638741, 38401291553086405072860452569, 287412720357301174793668207559205, 2753382861926383584939774967275568801
Offset: 0
-
g := t -> (exp(t)+2*exp(-t/2)*cos(sqrt(3)*t/2))/3: series(1/(2-g(t^(1/3))),t,14): seq(((3*n)!*coeff(%,t,n)),n=0..13); # Peter Luschny, Jul 07 2015
-
g[t_] := (Exp[t] + 2 Exp[-t/2] Cos[Sqrt[3] t/2])/3;
a[n_] := (3n)! SeriesCoefficient[1/(2 - g[t^(1/3)]), {t, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 13 2018, after Peter Luschny *)
-
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(3*n, 3*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
-
def CEN(m, len):
f, e, r, u = [1], [1], [1], 1
for i in (1..len-1):
f.append(rising_factorial(u, m))
for k in range(i-1, -1, -1):
e[k] = (e[k]*f[i])//f[i-k]
s = sum(e); e.append(s); r.append(s)
u += m
return r
A243664 = lambda len: CEN(3,len)
A243664(14) # Peter Luschny, Jul 06 2015
-
# Alternative
def PackedWords3(n):
shapes = [[x**3 for x in p] for p in Partitions(n)]
return sum([factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes])
[PackedWords3(n) for n in (0..13)] # Peter Luschny, Aug 02 2015
A249939
E.g.f.: 1/(5 - 4*cosh(x)).
Original entry on oeis.org
1, 4, 100, 6244, 727780, 136330084, 37455423460, 14188457293924, 7087539575975140, 4514046217675793764, 3570250394992512270820, 3433125893070920512725604, 3944372161432193963534198500, 5336301013125557989981503385444, 8396749419933421378024498580446180
Offset: 0
E.g.f.: E(x) = 1 + 4*x^2/2! + 100*x^4/4! + 6244*x^6/6! + 727780*x^8/8! +...
where E(x) = 1/(5 - 4*cosh(x)) = -exp(x) / (2 - 5*exp(x) + 2*exp(2*x)).
ALTERNATE GENERATING FUNCTION.
E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 6244*x^3/3! + 727780*x^4/4! +...
where 3*A(x) = 1 + 2*exp(x)/2 + 2*exp(4*x)/2^2 + 2*exp(9*x)/2^3 + 2*exp(16*x)/2^4 + 2*exp(25*x)/2^5 + 2*exp(36*x)/2^6 + 2*exp(49*x)/2^7 +...
-
/* E.g.f.: 1/(5 - 4*cosh(x)) */
{a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( 1/(5 - 4*cosh(X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Formula for a(n): */
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = if(n==0, 1, sum(k=1, (2*n+1)\3, 2*(3*k-1)! * Stirling2(2*n+1, 3*k)))}
for(n=0, 20, print1(a(n), ", "))
-
/* Formula for a(n): */
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = if(n==0, 1, (4/3)*sum(k=0, 2*n, k! * Stirling2(2*n, k) ))}
for(n=0, 20, print1(a(n), ", "))
A210672
a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, 2, 26, 842, 50906, 4946282, 704888186, 138502957322, 35887046307866, 11855682722913962, 4863821092813045946, 2425978759725443056202, 1445750991051368583278426, 1014551931766896667943384042, 828063237870027116855857421306, 777768202388460616924079724057482
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];
g(2);
-
nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Showing 1-10 of 30 results.
Comments