Original entry on oeis.org
1, 2, 28, 968, 62512, 6487712, 987533248, 207257057408, 57359688424192, 20240182500956672, 8869195638810631168, 4725115451770644482048, 3007722163880719988764672, 2254432760608214922012434432, 1965374406868398554356767244288, 1971745067277979562424894483365888
Offset: 0
A362585
Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 3, 6, 3, 13, 39, 39, 13, 75, 300, 450, 300, 75, 541, 2705, 5410, 5410, 2705, 541, 4683, 28098, 70245, 93660, 70245, 28098, 4683, 47293, 331051, 993153, 1655255, 1655255, 993153, 331051, 47293, 545835, 4366680, 15283380, 30566760, 38208450, 30566760, 15283380, 4366680, 545835
Offset: 0
[0] 1;
[1] 1, 1;
[2] 3, 6, 3;
[3] 13, 39, 39, 13;
[4] 75, 300, 450, 300, 75;
[5] 541, 2705, 5410, 5410, 2705, 541;
[6] 4683, 28098, 70245, 93660, 70245, 28098, 4683;
-
def TransOrdPart(m, n) -> list[int]:
@cached_function
def P(m: int, n: int):
R = PolynomialRing(ZZ, "x")
if n == 0: return R(1)
return R(sum(binomial(m * n, m * k) * P(m, n - k) * x
for k in range(1, n + 1)))
T = P(m, n)
def C(k) -> int:
return sum(T[j] * binomial(n, k) for j in range(n + 1))
return [C(k) for k in range(n+1)]
def A362585(n) -> list[int]: return TransOrdPart(1, n)
for n in range(6): print(A362585(n))
A362849
Triangle read by rows, T(n, k) = A243664(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 21, 42, 21, 1849, 5547, 5547, 1849, 426405, 1705620, 2558430, 1705620, 426405, 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081, 173959321557, 1043755929342, 2609389823355, 3479186431140, 2609389823355, 1043755929342, 173959321557
Offset: 0
[0] 1;
[1] 1, 1;
[2] 21, 42, 21;
[3] 1849, 5547, 5547, 1849;
[4] 426405, 1705620, 2558430, 1705620, 426405;
[5] 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081;
Cf.
A243664 (column 0 and main diagonal).
Showing 1-3 of 3 results.