cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A255929 Expansion of exp( Sum_{n >= 1} A210672(n)*x^n/n ).

Original entry on oeis.org

1, 2, 15, 308, 13399, 1019106, 119698377, 20039968920, 4527610159068, 1326616296092984, 489092182592254708, 221537815033845709776, 120928125204565597029220, 78286897353506845258973144, 59305342759674536454338570652, 51970719684035315747385128783808
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + 2*x + 15*x^2 + 308*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210672.
This sequence is the particular case m = 2 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

A210672, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255930(m = 3).

Programs

  • Maple
    #A255929
    A210672 := proc (n) option remember; if n = 0 then 1 else 2*add(binomial(2*n, 2*k)*A210672(k), k = 0 .. n-1) end if; end proc:
    A255929 := proc (n) option remember; if n = 0 then 1 else add(A210672(n-k)*A255929(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255929(n), n = 0 .. 15);

Formula

O.g.f.: exp(2*x + 26*x^2/2 + 842*x^3/3 + 50906*x^4/4 + ...) = 1 + 2*x + 15*x^2 + 308*x^3 + 13399*x^4 + ....
a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210672(n-k)*a(k) for n >= 1.

A028296 Expansion of e.g.f. Gudermannian(x) = 2*arctan(exp(x)) - Pi/2.

Original entry on oeis.org

1, -1, 5, -61, 1385, -50521, 2702765, -199360981, 19391512145, -2404879675441, 370371188237525, -69348874393137901, 15514534163557086905, -4087072509293123892361, 1252259641403629865468285, -441543893249023104553682821, 177519391579539289436664789665
Offset: 0

Views

Author

Keywords

Comments

The Euler numbers A000364 with alternating signs.
The first column of the inverse to the matrix with entries C(2*i,2*j), i,j >=0. The full matrix is lower triangular with the i-th subdiagonal having entries a(i)*C(2*j,2*i) j>=i. - Nolan Wallach (nwallach(AT)ucsd.edu), Dec 26 2005
This sequence is also EulerE(2*n). - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 14 2006
Consider the sequence defined by a(0)=1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
To avoid possible confusion: these are the odd e.g.f. coefficients of Gudermannian(x) with the offset shifted by -1 (even coefficients are zero). They are identical to the even e.g.f. coefficients for 1/cosh(x) = -Gudermannian'(x) (see the Example). Since the complex root of cosh(z) with the smallest absolute value is z0 = i*Pi/2, the radius of convergence for the Taylor series of all these functions is Pi/2 = A019669. - Stanislav Sykora, Oct 07 2016

Examples

			Gudermannian(x) = x - (1/6)*x^3 + (1/24)*x^5 - (61/5040)*x^7 + (277/72576)*x^9 + ....
Gudermannian'(x) = 1/cosh(x) = (1/1!)*x^0 - (1/2!)*x^2 + (5/4!)*x^4 - (61/6!)*x^6 + (1385/8!)*x^8 + .... - _Stanislav Sykora_, Oct 07 2016
		

References

  • Gradshteyn and Ryzhik, Tables, 5th ed., Section 1.490, pp. 51-52.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B45.

Crossrefs

Absolute values are the Euler numbers A000364.
Cf. A019669.

Programs

  • Maple
    A028296 := proc(n) a :=0 ; for k from 1 to 2*n+1 by 2 do a := a+(-1)^((k-1)/2)/2^k/k *add( (-1)^i *(k-2*i)^(2*n+1) *binomial(k,i), i=0..k) ; end do: a ; end proc:
    seq(A028296(n),n=0..10) ; # R. J. Mathar, Apr 20 2011
  • Mathematica
    Table[EulerE[2*n], {n, 0, 30}] (* Paul Abbott, Apr 14 2006 *)
    Table[(CoefficientList[Series[1/Cosh[x],{x,0,40}],x]*Range[0,40]!)[[2*n+1]],{n,0,20}] (* Vaclav Kotesovec, Aug 04 2014*)
    With[{nn=40},Take[CoefficientList[Series[Gudermannian[x],{x,0,nn}],x] Range[ 0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Feb 24 2018 *)
    {1, Table[2*(-I)*PolyLog[-2*n, I], {n, 1, 12}]} // Flatten (* Peter Luschny, Aug 12 2021 *)
    a[0] := 1; a[n_] := a[n] = -Sum[Binomial[2 n, 2 k] a[k], {k, 0, n - 1}]; Map[a, Range[0, 16]] (* Oliver Seipel, May 19 2024 *)
  • Maxima
    a(n):=sum((-1+(-1)^(k))*(-1)^((k+1)/2)/(2^(k+1)*k)*sum((-1)^i*(k-2*i)^n*binomial(k,i),i,0,k),k,1,n); /* with interpolated zeros, Vladimir Kruchinin, Apr 20 2011 */
    
  • PARI
    a(n) = 2*imag(polylog(-2*n, I)); \\ Michel Marcus, May 30 2018
    
  • PARI
    a(n)=eulerfrac(2*n) \\ Charles R Greathouse IV, Mar 23 2022
    
  • Python
    from sympy import euler
    def A028296(n): return euler(n<<1) # Chai Wah Wu, Apr 16 2023
  • Sage
    def A028296_list(len):
        f = lambda k: x*(k+1)^2
        g = 1
        for k in range(len-2,-1,-1):
            g = (1-f(k)/(f(k)+1/g)).simplify_rational()
        return taylor(g, x, 0, len-1).list()
    print(A028296_list(17))
    
  • Sage
    def A028296(n):
        shapes = ([x*2 for x in p] for p in Partitions(n))
        return sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
    print([A028296(n) for n in (0..16)]) # Peter Luschny, Aug 10 2015
    

Formula

E.g.f.: sech(x) = 1/cosh(x) (even terms), or Gudermannian(x) (odd terms).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*binomial(2*n, 2*i). - Ralf Stephan, Feb 24 2005
a(n) = Sum_{k=1,3,5,..,2n+1} ((-1)^((k-1)/2) /(2^k*k)) * Sum_{i=0..k} (-1)^i*(k-2*i)^(2n+1) * binomial(k,i). - Vladimir Kruchinin, Apr 20 2011
a(n) = 2^(4*n+1)*(zeta(-2*n,1/4) - zeta(-2*n,3/4)). - Gerry Martens, May 27 2011
From Sergei N. Gladkovskii, Dec 15 2011 - Oct 09 2013: (Start)
Continued fractions:
G.f.: A(x) = 1 - x/(S(0)+x), S(k) = euler(2*k) + x*euler(2*k+2) - x*euler(2*k)* euler(2*k+4)/S(k+1).
E.g.f.: E(x) = 1 - x/(S(0)+x); S(k) = (k+1)*euler(2*k) + x*euler(2*k+2) - x*(k+1)* euler(2*k)*euler(2*k+4)/S(k+1).
2*arctan(exp(z)) - Pi/2 = z*(1 - z^2/(G(0) + z^2)), G(k) = 2*(k+1)*(2*k+3)*euler(2*k) + z^2*euler(2*k+2) - 2*z^2*(k+1)*(2*k+3)*euler(2*k)*euler(2*k+4)/G(k+1).
G.f.: A(x) = 1/S(0) where S(k) = 1 + x*(k+1)^2/S(k+1).
G.f.: 1/Q(0) where Q(k) = 1 - x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2-1)/Q(k+1).
E.g.f.:(2 - x^4/( (x^2+2)*Q(0) + 2))/(2+x^2) where Q(k) = 4*k + 4 + 1/( 1 - x^2/( 2 + x^2 + (2*k+3)*(2*k+4)/Q(k+1))).
E.g.f.: 1/cosh(x) = 8*(1-x^2)/(8 - 4*x^2 - x^4*U(0)) where U(k) = 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 + 8*(k+1)*(k+2)*(k+3)/U(k+1)));
G.f.: 1/U(0) where U(k) = 1 - x + x*(2*k+1)*(2*k+2)/(1 + x*(2*k+1)*(2*k+2)/U(k+1));
G.f.: 1 - x/G(0) where G(k) = 1 - x + x*(2*k+2)*(2*k+3)/(1 + x*(2*k+2)*(2*k+3)/G(k+1));
G.f.: 1/Q(0), where Q(k) = 1 - sqrt(x) + sqrt(x)*(k+1)/(1-sqrt(x)*(k+1)/Q(k+1));
G.f.: (1/Q(0) + 1)/(1-sqrt(x)), where Q(k) = 1 - 1/sqrt(x) + (k+1)*(k+2)/Q(k+1);
G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 + 1/Q(k+1)). (End)
a(n) ~ (-1)^n * (2*n)! * 2^(2*n+2) / Pi^(2*n+1). - Vaclav Kotesovec, Aug 04 2014
a(n) = 2*Im(Li_{-2n}(i)), where Li_n(x) is polylogarithm, i=sqrt(-1). - Vladimir Reshetnikov, Oct 22 2015

A094088 E.g.f. 1/(2-cosh(x)) (even coefficients).

Original entry on oeis.org

1, 1, 7, 121, 3907, 202741, 15430207, 1619195761, 224061282907, 39531606447181, 8661323866026007, 2307185279184885001, 734307168916191403507, 275199311597682485597221, 119956934012963778952439407
Offset: 0

Views

Author

Ralf Stephan, Apr 30 2004

Keywords

Comments

With alternating signs, e.g.f.: 1/(2-cos(x)).
7 divides a(3n+2). Ira Gessel remarks: For any odd prime p, the coefficients of 1/(2-cosh(x)) as e.g.f. are periodic with period dividing p-1.
Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k = 1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
a(n) is the number of ordered set partitions of {1,2,...,2n} into even size blocks. - Geoffrey Critzer, Dec 03 2012
Except for a(0), row sums of A241171. - Peter Bala, Aug 20 2014
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255928. - Peter Bala, Mar 13 2015
Also the 2-packed words of degree n; cf. A011782, A000670, A094088, A243664, A243665, A243666 for k-packed words for 0<=k<=5. - Peter Luschny, Jul 06 2015

Crossrefs

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];g(1); # N. J. A. Sloane, Mar 28 2012
  • Mathematica
    nn=30;Select[Range[0,nn]!CoefficientList[Series[1/(2-Cosh[x]),{x,0,nn}],x],#>0&]  (* Geoffrey Critzer, Dec 03 2012 *)
    a[0]=1; a[n_] := Sum[1/2*(1+(-1)^(2*n))*Sum[((-1)^(k-j)*Binomial[k, j]*Sum[(j-2*i )^(2*n)*Binomial[j, i], {i, 0, j}])/2^j, {j, 1, k}], {k, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
  • Maxima
    a(n):=b(2*n+2);
    b(n):=sum(((sum(((sum((j-2*i)^n*binomial(j,i),i,0,j))*(-1)^(k-j)*binomial(k,j))/2^(j),j,1,k))*((-1)^n+1))/2,k,1,n/2); /* Vladimir Kruchinin, Apr 23 2011 */
    
  • Maxima
    a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)),k,1,2*n); /* Vladimir Kruchinin, Oct 05 2012 */
  • PARI
    a(n) = if (n == 0, 1, sum(k=1, n, binomial(2*n, 2*n-2*k)*a(n-k)));
    
  • Sage
    def A094088(n) :
        @CachedFunction
        def intern(n) :
            if n == 0 : return 1
            if n % 2 != 0 : return 0
            return add(intern(k)*binomial(n,k) for k in range(n)[::2])
        return intern(2*n)
    [A094088(n) for n in (0..14)]  # Peter Luschny, Jul 14 2012
    

Formula

1/(2-cosh(x)) = Sum_{n>=0} a(n)x^(2n)/(2n)! = 1 + x^2/2 + 7x^4/24 + 121x^6/720 + ...
Recurrence: a(0)=1, a(n) = Sum_{k=1..n} C(2n, 2n-2k)*a(n-k).
a(0)=1 and, for n>=1, a(n)=b(2*n) where b(n) = sum(k=1..n/2,((sum(j=1..k, ((sum(i=0..j,(j-2*i)^n*binomial(j,i)))*(-1)^(k-j)*binomial(k,j))/2^(j)))*((-1)^n+1))/2). - Vladimir Kruchinin, Apr 23 2011
E.g.f.: 1/(2-cosh(x))=8*(1-x^2)/(8 - 12*x^2 + x^4*U(0)) where U(k)= 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 + 8*(k+1)*(k+2)*(k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 30 2012
a(n) = Sum_{k=1..2*n} ( Sum_{i=0..k-1} (i-k)^(2*n) * binomial(2*k,i) * (-1)^i )/2^(k-1), n>0, a(0)=1. - Vladimir Kruchinin, Oct 05 2012
a(n) ~ 2*(2*n)! /(sqrt(3) * (log(2+sqrt(3)))^(2*n+1)). - Vaclav Kotesovec, Oct 19 2013

Extensions

Corrected definition, Joerg Arndt, Apr 26 2011

A210657 a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, -2, 22, -602, 30742, -2523002, 303692662, -50402079002, 11030684333782, -3077986048956602, 1066578948824962102, -449342758735568563802, 226182806795367665865622, -134065091768709178087428602, 92423044260377387363207812342, -73323347841467639992211297199002
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

The version without signs has an interpretation as a sum over marked Schröder paths. See the Josuat-Verges and Kim reference.
Consider the sequence defined by a(0)=1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Apparently a(n) = 2*(-1)^n*A002114(n). - R. J. Mathar, Mar 01 2015

Crossrefs

Programs

  • Maple
    A210657:=proc(n) option remember;
       if n=0 then 1
       else -2*add(binomial(2*n,2*k)*procname(n-k),k=1..floor(n)); fi;
    end;
    [seq(f(n),n=0..20)];
    # Second program:
    a := (n) -> 2*36^n*(Zeta(0,-n*2,1/6)-Zeta(0,-n*2,2/3)):
    seq(a(n), n=0..15); # Peter Luschny, Mar 11 2015
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(2*Cosh[x]-1), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
    Table[9^n EulerE[2 n, 1/3], {n, 0, 20}] (* Vladimir Reshetnikov, Jun 05 2016 *)
  • PARI
    a(n)=polcoeff(sum(m=0, n, (2*m)!*(-x)^m/prod(k=1, m, 1-k^2*x +x*O(x^n)) ), n)
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Sep 17 2012

Formula

O.g.f.: Sum_{n>=0} (2*n)! * (-x)^n / Product_{k=1..n} (1 - k^2*x). - Paul D. Hanna, Sep 17 2012
E.g.f.: 1/(2*cosh(x) - 1) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. - Paul D. Hanna, Oct 30 2014
E.g.f.: cos(z/2)/cos(3z/2) = Sum_{n>=0} abs(a(n))*x^(2*n)/(2*n)!. - Olivier Gérard, Feb 12 2014
From Peter Bala, Mar 09 2015: (Start)
a(n) = 3^(2*n)*E(2*n,1/3), where E(n,x) is the n-th Euler polynomial.
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - x*(3*k + 1)^2).
O.g.f. as a continued fraction: 1/(1 + (3^2 - 1^2)*x/(4 + 12^2*x/(4 + (18^2 - 2^2)*x/(4 + 24^2*x/(4 + (30^2 - 2^2)*x/(4 + 36^2*x/(4 + ... ))))))) = 1 - 2*x + 22*x^2 - 602*x^3 + 30742*x^4 - .... See Josuat-Vergès and Kim, p. 23.
The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255882. (End)
a(n) = 2*36^n*(zeta(-n*2,1/6)-zeta(-n*2,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) ~ 2 * (-1)^n * (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 14 2015
a(n) = Sum_{k=0..n} A241171(n, k)*(-2)^k. - Peter Luschny, Sep 03 2022

A249939 E.g.f.: 1/(5 - 4*cosh(x)).

Original entry on oeis.org

1, 4, 100, 6244, 727780, 136330084, 37455423460, 14188457293924, 7087539575975140, 4514046217675793764, 3570250394992512270820, 3433125893070920512725604, 3944372161432193963534198500, 5336301013125557989981503385444, 8396749419933421378024498580446180
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2014

Keywords

Comments

a(n) = 4*A242858(2*n) for n>0.
a(n) = A249940(n)/3.
a(n) == 4 (mod 96) for n>0.

Examples

			E.g.f.: E(x) = 1 + 4*x^2/2! + 100*x^4/4! + 6244*x^6/6! + 727780*x^8/8! +...
where E(x) = 1/(5 - 4*cosh(x)) = -exp(x) / (2 - 5*exp(x) + 2*exp(2*x)).
ALTERNATE GENERATING FUNCTION.
E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 6244*x^3/3! + 727780*x^4/4! +...
where 3*A(x) = 1 + 2*exp(x)/2 + 2*exp(4*x)/2^2 + 2*exp(9*x)/2^3 + 2*exp(16*x)/2^4 + 2*exp(25*x)/2^5 + 2*exp(36*x)/2^6 + 2*exp(49*x)/2^7 +...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: 1/(5 - 4*cosh(x)) */
    {a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( 1/(5 - 4*cosh(X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0, 1, sum(k=1, (2*n+1)\3, 2*(3*k-1)! * Stirling2(2*n+1, 3*k)))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0, 1, (4/3)*sum(k=0, 2*n, k! * Stirling2(2*n, k) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: 1/3 + (2/3)*Sum_{n>=1} exp(n^2*x) / 2^n = Sum_{n>=0} a(n)*x^n/n!.
a(n) = (4/3) * Sum_{k=0..2*n} k! * Stirling2(2*n, k) for n>0 with a(0)=1.
a(n) = Sum_{k=1..[(2*n+1)/3]} 2 * (3*k-1)! * Stirling2(2*n+1, 3*k) for n>0 with a(0)=3, after Vladimir Kruchinin in A242858.

A210676 a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, -3, 51, -2163, 171231, -21785223, 4065116811, -1045879150683, 354837765112791, -153492920593758543, 82453488412268175171, -53850296379425229208803, 42020794900180632536559951, -38611325264740403135096141463, 41264215393801752999038147563131, -50749285521783354479522581233836523
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255926. - Peter Bala, Mar 13 2015
In general, for c<>0 is e.g.f. = 1/(c+1-c*cosh(x)) (even coefficients). For c > 0 is a(n) ~ 2 * (2*n)! / (sqrt(2*c+1) * (arccosh((c+1)/c))^(2*n+1)). For c < 0 is a(n) ~ (-1)^n * (2*n)! / (sqrt(-2*c-1) * 2^(2*n) * arccos(sqrt((2*c + 1) / (2*c)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

Crossrefs

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];
    g(-3);
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(3*Cosh[x]-2), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

E.g.f.: 1/(3*cosh(x)-2) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) ~ (-1)^n * (2*n)! / (sqrt(5) * 2^(2*n) * (arccos(sqrt(5/6)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

A210674 a(0)=1; thereafter a(n) = 3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, 3, 57, 2703, 239277, 34041603, 7103141697, 2043564786903, 775293596155317, 375019773885750603, 225270492555606688137, 164517775480287009524703, 143555042043378357951428157, 147502150365016885913874781203, 176273363579960990244526939543377, 242422256082395157286909073370272103
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k = 1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255930. - Peter Bala, Mar 13 2015
In general, for c > 0 is a(n) ~ sqrt(Pi/(2*c+1)) * 2^(2*n+2) * n^(2*n+1/2) / (exp(2*n) * (log((c + 1 + sqrt(2*c+1)) / c))^(2*n+1)) = 2*(2*n)!/(sqrt(2*c+1)*(arccosh((c+1)/c))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
For c < 0 is a(n) ~ (-1)^n * (2*n)! / (sqrt(-2*c-1) * 2^(2*n) * arccos(sqrt((2*c + 1)/(2*c)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

Crossrefs

Cf. A210676 (c=-3), A210657 (c=-2), A028296 (c=-1), A094088 (c=1), A210672 (c=2), A249939 (c=4).
Cf. A255930.

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];
    g(3);
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(4-3*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

a(n) ~ sqrt(Pi/7) * 2^(2*n+2) * n^(2*n+1/2) / (exp(2*n) * (log((4 + sqrt(7)) / 3))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(4-3*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015

A352251 Expansion of e.g.f. 1 / (1 - x * sinh(x)) (even powers only).

Original entry on oeis.org

1, 2, 28, 966, 62280, 6452650, 980531916, 205438870014, 56760128400016, 19994672935658322, 8746764024725937300, 4651991306703670964518, 2956156902003429777549144, 2212026607642404922284728826, 1925137044528752884360406444380, 1928103808741894922401976601295950
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; Take[CoefficientList[Series[1/(1 - x Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
  • PARI
    my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022

Formula

a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(2*n,2*k) * k * a(n-k).
Showing 1-8 of 8 results.