A210672
a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, 2, 26, 842, 50906, 4946282, 704888186, 138502957322, 35887046307866, 11855682722913962, 4863821092813045946, 2425978759725443056202, 1445750991051368583278426, 1014551931766896667943384042, 828063237870027116855857421306, 777768202388460616924079724057482
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];
g(2);
-
nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
A255926
Expansion of exp( Sum_{n >= 1} A210676(n)*x^n/n ).
Original entry on oeis.org
1, -3, 30, -802, 45414, -4508190, 692197470, -151610017950, 44827810930305, -17193060505570335, 8298004578522898140, -4920774627129981351120, 3516683319021255757053900, -2980761698101283167670391780, 2956463734237276273792194346560, -3392220222832838757465019626175680
Offset: 0
-
A210676 := proc (n) option remember; if n = 0 then 1 else -3*add(binomial(2*n, 2*k)*A210676(k), k = 0 .. n-1) end if; end proc:
A255926 := proc (n) option remember; if n = 0 then 1 else add(A210676(n-k)*A255926(k), k = 0 .. n-1)/n end if; end proc:
seq(A255926(n), n = 0 .. 16);
A255928
Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).
Original entry on oeis.org
1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
Offset: 0
-
A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
seq(A255928(n), n = 0 .. 16);
A255930
Expansion of exp( Sum_{n >= 1} A210674(n)*x^n/n ).
Original entry on oeis.org
1, 3, 33, 991, 63060, 7018860, 1206748720, 295775068680, 97835325011235, 41970842737399345, 22655642596496388759, 15025240474194493147857, 12008582230377080862401692, 11382727559611560650861409564, 12625404970864692720119281536900, 16199644066580777034289339157904220
Offset: 0
-
#A255930
A210674 := proc (n) option remember; if n = 0 then 1 else 3*add(binomial(2*n, 2*k)*A210674(k), k = 0 .. n-1) end if; end proc:
A255930 := proc (n) option remember; if n = 0 then 1 else add(A210674(n-k)*A255930(k), k = 0 .. n-1)/n end if; end proc:
seq(A255930(n), n = 0 .. 15);
Showing 1-4 of 4 results.
Comments