cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210672 a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, 2, 26, 842, 50906, 4946282, 704888186, 138502957322, 35887046307866, 11855682722913962, 4863821092813045946, 2425978759725443056202, 1445750991051368583278426, 1014551931766896667943384042, 828063237870027116855857421306, 777768202388460616924079724057482
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k = 1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255929. - Peter Bala, Mar 13 2015
The Stirling-Bernoulli transform of Fibonacci(n+1) = 1, 1, 2, 3, 5, 8, 13, ... is 1, 0, 2, 0, 26, 0, 842, 0, 50906, 0, ... - Philippe Deléham, May 25 2015

Crossrefs

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];
    g(2);
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

a(n) ~ 2*sqrt(Pi/5) * n^(2*n+1/2) / (exp(2*n) * (log((1+sqrt(5))/2))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(3-2*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) = Sum_{k = 0..2*n} A163626(2*n,k)*A000045(n+1). - Philippe Deléham, May 25 2015
a(n) = Sum_{k=0..n} A241171(n, k)*2^k. - Peter Luschny, Sep 03 2022

A255926 Expansion of exp( Sum_{n >= 1} A210676(n)*x^n/n ).

Original entry on oeis.org

1, -3, 30, -802, 45414, -4508190, 692197470, -151610017950, 44827810930305, -17193060505570335, 8298004578522898140, -4920774627129981351120, 3516683319021255757053900, -2980761698101283167670391780, 2956463734237276273792194346560, -3392220222832838757465019626175680
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 - 3*x + 30*x^2 - 802*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210676.
This sequence is the particular case m = -3 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row polynomial of A241171.

Crossrefs

Cf. A210676, A241171, A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2), A255930(m = 3).

Programs

  • Maple
    A210676 := proc (n) option remember; if n = 0 then 1 else -3*add(binomial(2*n, 2*k)*A210676(k), k = 0 .. n-1) end if; end proc:
    A255926 := proc (n) option remember; if n = 0 then 1 else add(A210676(n-k)*A255926(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255926(n), n = 0 .. 16);

Formula

O.g.f.: exp(-3*x + 51*x^2/2 - 2163*x^3/3 + 171231*x^4/4 + ...) = 1 - 3*x + 30*x^2 - 802*x^3 + 45414*x^4 - ....
a(0) = 1 and a(n) = (1/n)*Sum_{k = 0..n-1} A210676(n-k)*a(k) for n >= 1.

A255928 Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).

Original entry on oeis.org

1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + x + 4*x^2 + 44*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A094088.
This sequence is the particular case m = 1 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

Cf. A094088, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2), A255930(m = 3).

Programs

  • Maple
    A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
    A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255928(n), n = 0 .. 16);

Formula

O.g.f.: exp(x + 7*x^2/2 + 121*x^3/3 + 3907*x^4/4 + ...) = 1 + x + 4*x^2 + 44*x^3 + 1025*x^4 + ....
a(0) = 1 and a(n) = (1/n)*Sum_{k = 0..n-1} A094088(n-k)*a(k) for n >= 1.

A255930 Expansion of exp( Sum_{n >= 1} A210674(n)*x^n/n ).

Original entry on oeis.org

1, 3, 33, 991, 63060, 7018860, 1206748720, 295775068680, 97835325011235, 41970842737399345, 22655642596496388759, 15025240474194493147857, 12008582230377080862401692, 11382727559611560650861409564, 12625404970864692720119281536900, 16199644066580777034289339157904220
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + 3*x + 33*x^2 + 991*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210674.
This sequence is the particular case m = 3 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928 (m = 1) and A255929(m = 2).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

Cf. A210674, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2).

Programs

  • Maple
    #A255930
    A210674 := proc (n) option remember; if n = 0 then 1 else 3*add(binomial(2*n, 2*k)*A210674(k), k = 0 .. n-1) end if; end proc:
    A255930 := proc (n) option remember; if n = 0 then 1 else add(A210674(n-k)*A255930(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255930(n), n = 0 .. 15);

Formula

O.g.f.: exp(3*x + 57*x^2/2 + 2703*x^3/3 + 239277*x^4/4 + ...) = 1 + 3*x + 33*x^2 + 991*x^3 + 63060*x^4 + ....
a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210674(n-k)*a(k) for n >= 1.
Showing 1-4 of 4 results.