E.g.f.: sech(x) = 1/cosh(x) (even terms), or Gudermannian(x) (odd terms).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*binomial(2*n, 2*i). -
Ralf Stephan, Feb 24 2005
a(n) = Sum_{k=1,3,5,..,2n+1} ((-1)^((k-1)/2) /(2^k*k)) * Sum_{i=0..k} (-1)^i*(k-2*i)^(2n+1) * binomial(k,i). -
Vladimir Kruchinin, Apr 20 2011
a(n) = 2^(4*n+1)*(zeta(-2*n,1/4) - zeta(-2*n,3/4)). -
Gerry Martens, May 27 2011
Continued fractions:
G.f.: A(x) = 1 - x/(S(0)+x), S(k) = euler(2*k) + x*euler(2*k+2) - x*euler(2*k)* euler(2*k+4)/S(k+1).
E.g.f.: E(x) = 1 - x/(S(0)+x); S(k) = (k+1)*euler(2*k) + x*euler(2*k+2) - x*(k+1)* euler(2*k)*euler(2*k+4)/S(k+1).
2*arctan(exp(z)) - Pi/2 = z*(1 - z^2/(G(0) + z^2)), G(k) = 2*(k+1)*(2*k+3)*euler(2*k) + z^2*euler(2*k+2) - 2*z^2*(k+1)*(2*k+3)*euler(2*k)*euler(2*k+4)/G(k+1).
G.f.: A(x) = 1/S(0) where S(k) = 1 + x*(k+1)^2/S(k+1).
G.f.: 1/Q(0) where Q(k) = 1 - x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2-1)/Q(k+1).
E.g.f.:(2 - x^4/( (x^2+2)*Q(0) + 2))/(2+x^2) where Q(k) = 4*k + 4 + 1/( 1 - x^2/( 2 + x^2 + (2*k+3)*(2*k+4)/Q(k+1))).
E.g.f.: 1/cosh(x) = 8*(1-x^2)/(8 - 4*x^2 - x^4*U(0)) where U(k) = 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 + 8*(k+1)*(k+2)*(k+3)/U(k+1)));
G.f.: 1/U(0) where U(k) = 1 - x + x*(2*k+1)*(2*k+2)/(1 + x*(2*k+1)*(2*k+2)/U(k+1));
G.f.: 1 - x/G(0) where G(k) = 1 - x + x*(2*k+2)*(2*k+3)/(1 + x*(2*k+2)*(2*k+3)/G(k+1));
G.f.: 1/Q(0), where Q(k) = 1 - sqrt(x) + sqrt(x)*(k+1)/(1-sqrt(x)*(k+1)/Q(k+1));
G.f.: (1/Q(0) + 1)/(1-sqrt(x)), where Q(k) = 1 - 1/sqrt(x) + (k+1)*(k+2)/Q(k+1);
G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 + 1/Q(k+1)). (End)
a(n) ~ (-1)^n * (2*n)! * 2^(2*n+2) / Pi^(2*n+1). -
Vaclav Kotesovec, Aug 04 2014
a(n) = 2*Im(Li_{-2n}(i)), where Li_n(x) is polylogarithm, i=sqrt(-1). -
Vladimir Reshetnikov, Oct 22 2015
Comments