A205571
Expansion of e.g.f. 1/(1 - x*cosh(x)).
Original entry on oeis.org
1, 1, 2, 9, 48, 305, 2400, 22057, 230272, 2708001, 35412480, 509177801, 7986468864, 135718942801, 2483729876992, 48699677975145, 1018542257111040, 22634000289407297, 532557637644976128, 13226748101381102473, 345792863300174479360, 9492229607399841038961
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 48*x^4/4! + 305*x^5/5! +...
-
CoefficientList[Series[1/(1-x*Cosh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 13 2013 *)
-
{a(n)=n!*polcoeff(1/(1-x*cosh(x +x*O(x^n))),n)}
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*a185951(n, k)); \\ Seiichi Manyama, Feb 17 2025
A009189
Expansion of e.g.f.: exp(cos(x)*x).
Original entry on oeis.org
1, 1, 1, -2, -11, -24, 61, 624, 1737, -7424, -88679, -242560, 2086525, 23499776, 45950997, -1002251264, -9763133167, -2151563264, 705668046769, 5583112077312, -17356978593659, -666018502836224, -3823112141007763, 39230927775531008, 788728947108214489
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[Cos[x]*x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 15 2018 *)
-
a(n):=(sum(binomial(n,k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/(2^(k))*sum(binomial(k,i)*(k-2*i)^(n-k),i,0,floor((k-1)/2)),k,1,n-1))+1; /* Vladimir Kruchinin, Apr 21 2011 */
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*cos(x)))) \\ Seiichi Manyama, Mar 26 2022
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Mar 15 2018
A385310
Expansion of e.g.f. 1/(1 - 2 * x * cos(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 12, 69, 500, 4455, 46928, 571977, 7914384, 122585355, 2100940864, 39470867469, 806555184448, 17808628411119, 422498774818560, 10717948285126545, 289501146405400832, 8295124400250875667, 251300745071590317056, 8025654235707259740885, 269482309052945201181696
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k)*I^(n-k)*a185951(n, k));
A385311
Expansion of e.g.f. 1/(1 - 3 * x * cos(x))^(1/3).
Original entry on oeis.org
1, 1, 4, 25, 232, 2805, 41920, 744933, 15340416, 359136073, 9419223040, 273558859409, 8714789788672, 302151400126589, 11326084055150592, 456421403198919325, 19677025400034590720, 903660903945306053137, 44042354270955276599296, 2270411632567521580120713
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k)*I^(n-k)*a185951(n, k));
A381209
Expansion of e.g.f. 1/(1 - x*cos(x))^3.
Original entry on oeis.org
1, 3, 12, 51, 216, 735, 0, -39081, -575232, -6047973, -48314880, -189159333, 3046957056, 99745485879, 1789140627456, 23433663134655, 185580069027840, -1250544374605389, -94781673979379712, -2543434372808424957, -47763303489939701760, -586864592847636893937
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (k+2)!*I^(n-k)*a185951(n, k))/2;
A381283
Expansion of e.g.f. 1/(1 - x * cos(3*x)).
Original entry on oeis.org
1, 1, 2, -21, -192, -1095, 7200, 243747, 3088512, 1360881, -874437120, -21701765349, -186175604736, 5870711879721, 292185085151232, 5507319584787795, -38951106749890560, -6402114772676575263, -212680600451474522112, -1602903494245708491957, 197042528380347210792960
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*(3*I)^(n-k)*a185951(n, k));
A349104
Expansion of e.g.f. 1/(1 - (sin(x) + x*cos(x))/2 ).
Original entry on oeis.org
1, 1, 2, 4, 8, 3, -124, -1306, -10144, -67723, -363392, -831672, 16709824, 386800759, 5631873664, 66256305994, 619010054144, 3201069236265, -40479063835648, -1775812586063860, -39853546353553408, -694055641682352469, -9591063643658387456, -84103588142498507346
Offset: 0
-
With[{m = 23}, Range[0, m]! * CoefficientList[Series[1/(1 - (Sin[x] + x*Cos[x])/2), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-(sin(x)+x*cos(x))/2)))
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, (-1)^k*(k+1)*binomial(n, 2*k+1)*a(n-2*k-1)));
A352251
Expansion of e.g.f. 1 / (1 - x * sinh(x)) (even powers only).
Original entry on oeis.org
1, 2, 28, 966, 62280, 6452650, 980531916, 205438870014, 56760128400016, 19994672935658322, 8746764024725937300, 4651991306703670964518, 2956156902003429777549144, 2212026607642404922284728826, 1925137044528752884360406444380, 1928103808741894922401976601295950
Offset: 0
-
nmax = 30; Take[CoefficientList[Series[1/(1 - x Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
-
my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
A352646
Expansion of e.g.f. 1/(1 - 2 * x * cos(x)).
Original entry on oeis.org
1, 2, 8, 42, 288, 2410, 24000, 277186, 3648512, 53936082, 885150720, 15970846298, 314273439744, 6698574264122, 153746319720448, 3780677636321010, 99163499845386240, 2763481838977368994, 81542013760903053312, 2539717324111483027594
Offset: 0
-
With[{m = 19}, Range[0, m]! * CoefficientList[Series[1/(1 - 2*x*Cos[x]), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*x*cos(x))))
-
a(n) = if(n==0, 1, 2*sum(k=0, (n-1)\2, (-1)^k*(2*k+1)*binomial(n, 2*k+1)*a(n-2*k-1)));
A352647
Expansion of e.g.f. 1/(1 - 3 * x * cos(x)).
Original entry on oeis.org
1, 3, 18, 153, 1728, 24315, 410400, 8079729, 181786752, 4601232243, 129402385920, 4003157532297, 135098815002624, 4939266681129963, 194472450526169088, 8203835046344538465, 369151362125290045440, 17649035213360472293091, 893431062200523039178752
Offset: 0
-
With[{m = 18}, Range[0, m]! * CoefficientList[Series[1/(1 - 3*x*Cos[x]), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*x*cos(x))))
-
a(n) = if(n==0, 1, 3*sum(k=0, (n-1)\2, (-1)^k*(2*k+1)*binomial(n, 2*k+1)*a(n-2*k-1)));
Showing 1-10 of 17 results.
Comments