cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381276 Expansion of e.g.f. exp(x * cos(3*x)).

Original entry on oeis.org

1, 1, 1, -26, -107, 136, 9181, 53488, -427895, -10486016, -43859879, 1373548672, 23512856797, -30564574208, -6412871847563, -73709639926784, 1060067525174929, 40587133606543360, 179320588932698929, -14474677657838059520, -306563699887974043739, 2301792469199499132928
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, (3*I)^(n-k)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-9)^k * (2*k+1) * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} (3*i)^(n-k) * A185951(n,k), where i is the imaginary unit.

A381282 Expansion of e.g.f. 1/(1 - x * cos(2*x)).

Original entry on oeis.org

1, 1, 2, -6, -72, -520, -1200, 24752, 516992, 5106816, 5287680, -998945024, -23719719936, -272471972864, 1326261594112, 149170761246720, 3843177252618240, 42752553478356992, -863092250325614592, -59317347865870139392, -1577115871098630307840, -13173264127625587851264
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, k!*(2*I)^(n-k)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-4)^k * (2*k+1) * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * (2*i)^(n-k) * A185951(n,k), where i is the imaginary unit.

A381344 Expansion of e.g.f. 1/( 1 - x * cosh(sqrt(2)*x) ).

Original entry on oeis.org

1, 1, 2, 12, 72, 500, 4560, 47936, 565376, 7572240, 112838400, 1844425792, 32910332928, 636463467328, 13251265570816, 295598326909440, 7034150340034560, 177843592245969152, 4760839037033054208, 134528586280018721792, 4001489050575059025920, 124973219149863342633984
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, k!*2^((n-k)/2)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * (2*k+1) * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * 2^((n-k)/2) * A185951(n,k).
a(n) ~ sqrt(Pi) * 2^(n/2 + 1) * n^(n + 1/2) / ((cosh(r) + r*sinh(r)) * exp(n) * r^(n+1)), where r = 0.95090803593755778120914299086438615849657408871... is the root of the equation r*cosh(r) = sqrt(2). - Vaclav Kotesovec, Apr 19 2025

A381345 Expansion of e.g.f. 1/( 1 - x * cos(sqrt(2)*x) ).

Original entry on oeis.org

1, 1, 2, 0, -24, -220, -1200, -2576, 52864, 1016208, 10909440, 57039488, -687971328, -26190716864, -450123634688, -4238375059200, 24514848522240, 2156422420074752, 54984136073084928, 799573460292407296, 42320889956270080, -425007017470737816576, -15563879892284330213376
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, k!*(-2)^((n-k)/2)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-2)^k * (2*k+1) * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * (-2)^((n-k)/2) * A185951(n,k).
Showing 1-4 of 4 results.