cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381207 Expansion of e.g.f. 1/(1 - x*cosh(x))^3.

Original entry on oeis.org

1, 3, 12, 69, 504, 4335, 43200, 490161, 6220032, 87242427, 1340305920, 22375475133, 403237638144, 7801208775399, 161245892161536, 3545854432602345, 82653484859228160, 2035605515838402291, 52814589875313573888, 1439814136866851346357, 41145786213980645621760
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, (k+2)!*a185951(n, k))/2;

Formula

a(n) = 1/2 * Sum_{k=0..n} (k+2)! * A185951(n,k).

A381210 Expansion of e.g.f. 1/(1 - sinh(x))^3.

Original entry on oeis.org

1, 3, 12, 63, 408, 3123, 27552, 275103, 3065088, 37682883, 506606592, 7392091743, 116329479168, 1963781841843, 35395627487232, 678401549017983, 13776623985819648, 295481239628640003, 6674320861079273472, 158364407589097613823, 3937958237874411798528
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, (k+2)!*a136630(n, k))/2;

Formula

a(n) = 1/2 * Sum_{k=0..n} (k+2)! * A136630(n,k).

A381211 Expansion of e.g.f. 1/(1 - sin(x))^3.

Original entry on oeis.org

1, 3, 12, 57, 312, 1923, 13152, 98697, 805632, 7102563, 67233792, 679970937, 7315786752, 83421156003, 1004860895232, 12749105088777, 169926064668672, 2373678328434243, 34676591077097472, 528758667342524217, 8400613520498491392, 138830752520282729283
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, (k+2)!*I^(n-k)*a136630(n, k))/2;

Formula

a(n) = 1/2 * Sum_{k=0..n} (k+2)! * i^(n-k) * A136630(n,k), where i is the imaginary unit.

A381208 Expansion of e.g.f. 1/(1 - x*cos(x))^2.

Original entry on oeis.org

1, 2, 6, 18, 48, 10, -1440, -17654, -153216, -1003950, -2787840, 58057538, 1483941888, 22381115354, 245730121728, 1455189928890, -18135147970560, -856283065534046, -19218870434267136, -306007541260257422, -2933654664287354880, 20552099782407258282, 1938717354581701951488
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, (k+1)!*I^(n-k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} (k+1)! * i^(n-k) * A185951(n,k), where i is the imaginary unit.
Showing 1-4 of 4 results.