A385311
Expansion of e.g.f. 1/(1 - 3 * x * cos(x))^(1/3).
Original entry on oeis.org
1, 1, 4, 25, 232, 2805, 41920, 744933, 15340416, 359136073, 9419223040, 273558859409, 8714789788672, 302151400126589, 11326084055150592, 456421403198919325, 19677025400034590720, 903660903945306053137, 44042354270955276599296, 2270411632567521580120713
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k)*I^(n-k)*a185951(n, k));
A385304
Expansion of e.g.f. 1/(1 - 2 * sinh(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 16, 117, 1096, 12543, 169576, 2644617, 46735936, 922993083, 20145579136, 481555537917, 12511452674176, 351058439096823, 10579734482269696, 340820224678288017, 11687491783287586816, 425075150516293691763, 16343274366458168160256, 662325275389743380902917
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k)*a136630(n, k));
A385306
Expansion of e.g.f. 1/(1 - 2 * sin(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 14, 93, 796, 8343, 103424, 1479993, 24008656, 435364683, 8726775584, 191601310293, 4572794295616, 117871476051423, 3263515787807744, 96591500816346993, 3043368045293138176, 101702692426476460563, 3592948632452749243904, 133794496537591022166093
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/Sqrt[1-2Sin[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 09 2025 *)
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k)*I^(n-k)*a136630(n, k));
A385308
Expansion of e.g.f. 1/(1 - 2 * x * cosh(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 18, 141, 1400, 17055, 245392, 4070073, 76483584, 1606033755, 37267953536, 947051118981, 26156846230528, 780174007426359, 24992424003517440, 855795857724702705, 31193844533488074752, 1205893835653392258867, 49280187764171870470144, 2122704756621224015194365
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k)*a185951(n, k));
A385371
Expansion of e.g.f. 1/(1 - 2 * arcsinh(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 14, 93, 804, 8487, 105720, 1520313, 24790800, 451823403, 9101380320, 200808312405, 4816068148800, 124749498365775, 3470782979053440, 103225781141381745, 3268196553960218880, 109745731806193831635, 3895876984699452280320
Offset: 0
Showing 1-5 of 5 results.