cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: André F. Labossière

André F. Labossière's wiki page.

André F. Labossière has authored 45 sequences. Here are the ten most recent ones:

A119362 Combinatorial twin prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th twin primes or lesser: twin_prime(n) = 2^(n-6)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (i+2-n).

Original entry on oeis.org

32, 8, 32, 52, 208, 508, 2672, 9278, 71168, 258772, 2448352, 11401798, 123001112, 660768362, 7257835148, 50721144013, 643561620832, 4610932367548, 57562797069608, 547637465534282, 7281278491404272, 71412114145523938
Offset: 1

Author

André F. Labossière, Jul 24 2006

Keywords

Examples

			twin_prime(10) = [ 2^(10-6)/(10-1)! ] * [ 32*C(10-1,0)*(-7) + 8*C(10-1,1)*(-6) + 32*C(10-1,2)*(-5) + ... + 9278*C(10-1,7)*(0) + 71168*C(10-1,8)*(1) + 258772*C(10-1,9)*(2) ] = 31
		

Programs

  • Mathematica
    Mathematica 5.2 - webMathematica 2 - http://library.wolfram.com/webMathematica/Education/LongDivide.jsp

A120315 Combinatorial prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th primes or lesser: prime(n) = 2^(n-5)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (1-(n-i)/2).

Original entry on oeis.org

32, 8, 32, 52, 208, 508, 2672, 9278, 56048, 304132, 1654552, 12649198, 79342112, 615363002, 5010269828, 43213043413, 393086195632, 3633203615548, 38586294965048, 389261740224662, 4344329090764472, 51205748753742838
Offset: 1

Author

André F. Labossière, Jun 20 2006

Keywords

Examples

			prime(7) = [ 2^(7-5)/(7-1)! ] * [ 32*C(7-1,0)*(1-(7-1)/2) + 8*C(7-1,1)*(1-(7-2)/2) + 32*C(7-1,2)*(1-(7-3)/2) + 52*C(7-1,3)*(1-(7-4)/2) + 208*C(7-1,4)*(1-(7-5)/2) + 508*C(7-1,5)*(1-(7-6)/2) + 2672*C(7-1,6)*(1-(7-7)/2) ] = 17
		

Crossrefs

A115297 Treillis triangle: a triangle read by rows showing the coefficients of sum formulas of Treillis numbers (A115298). The k-th row (k>=1) contains a(n,k) for n=1 to (k+1)/2 (odd rows) and for n=1 to k/2 (even rows), where a(n,k) satisfies Sum_{n=1..[(k+1)/2_odd, k/2_even]} a(n,k). The last term of each row (and its only odd number) equals Prime(k+1)-2.

Original entry on oeis.org

1, 3, 2, 5, 4, 9, 2, 8, 11, 6, 10, 15, 4, 8, 14, 17, 6, 12, 16, 21, 2, 10, 14, 20, 27, 6, 12, 18, 26, 29, 4, 8, 16, 24, 28, 35, 6, 12, 22, 26, 34, 39, 2, 10, 18, 24, 32, 38, 41, 6, 16, 20, 30, 36, 40, 45, 4, 12, 18, 26, 34, 38, 44, 51, 10, 14, 24, 30, 36, 42, 50, 57, 6, 12, 20, 28, 32
Offset: 1

Author

André F. Labossière, Jan 19 2006

Keywords

Examples

			The computation for obtaining the coefficients of each row of the Treillis triangle are the paired differences between primes ascending and those descending. Only half-rows are to be considered for deducing such terms.
For the 13th row:
...................19-17,.23-13,.29-11,.31-7,.37-5,.41-3,.43-2
.....................2,.....10,....18,....24,...32,...38,...41
For the 14th row:
...................19-19,.23-17,.29-13,.31-11,.37-7,.41-5,.43-3,.47-2
.....................0,.....6,.....16,....20,....30,...36,...40,...45
From _Michael Somos_, Oct 17 2016: (Start)
Triangle:
1: 1,
2: 3,
3: 2, 5,
4: 4, 9,
5: 2, 8, 11,
6: 6, 10, 15,
7: 4, 8, 14, 17,
8: 6, 12, 16, 21,
... (End)
		

Crossrefs

Formula

For odd rows:
a(1, k) = a(1, k-1) - a(1, k-2)
a(2, k) = a(1, k-1) + [ a(2, k-1) - a(2, k-2) ]
a(3, k) = a(2, k-1) + [ a(3, k-1) - a(3, k-2) ]
...
a((k-1)/2, k) = a((k-3)/2, k-1) + [ a((k-1)/2, k-1) - a((k-1)/2, k-2) ]
a((k+1)/2, k) = Prime(k) - 2
and a((k-1)/2, k-1) = Prime(k-1) - 2
a((k-1)/2, k-2) = Prime(k-2) - 2
For even rows:
a(1, k) = a(1, k-1) + [ a(2, k-1) - a(1, k-2) ]
a(2, k) = a(2, k-1) + [ a(3, k-1) - a(2, k-2) ]
a(3, k) = a(3, k-1) + [ a(4, k-1) - a(3, k-2) ]
...
a((k-2)/2, k) = a((k-2)/2, k-1) + [ a(k/2, k-1) - a((k-2)/2, k-2) ]
a(k/2, k) = Prime(k) - 2
and a(k/2, k-1) = Prime(k-1) - 2
a((k-2)/2, k-2) = Prime(k-2) - 2
The recurrent prime formulas for odd and even rows are the following : prime(k_odd) = A000040(k_odd) = A115298(k) + Sum_{n=1..(k-3)/2} [ a(n,k-2) -2*a(n,k-1) ] + A000040(k-2) - A000040(k-1) +2; prime(k_even) = A000040(k_even) = A115298(k) + Sum_{n=1..(k-2)/2} [ a(n,k-2) -a((k-2)/2,k-2) -2*a(n,k-1) +a(1,k-1) ] + A000040(k-2) - A000040(k-1) + 2

A115298 Row sums of A115297.

Original entry on oeis.org

1, 3, 7, 13, 21, 31, 43, 55, 73, 91, 115, 139, 165, 193, 227, 263, 301, 339, 381, 423, 471, 517, 569, 625, 685, 745, 809, 871, 937, 1011, 1089, 1167, 1247, 1335, 1425, 1515, 1611, 1707, 1809, 1915, 2023, 2135, 2249, 2363, 2479, 2601, 2735, 2865, 2997, 3129
Offset: 1

Author

André F. Labossière, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    a:=n->add(ithprime(k)-ithprime(ceil(k/2)),k=2..n+1): seq(a(n),n=1..60); # Muniru A Asiru, Jan 04 2019
  • Mathematica
    Accumulate[Table[Prime[n] - Prime[Ceiling[n/2]], {n, 2, 51}]] (* Jon Maiga, Jan 04 2019 *)

Formula

a(n) = Sum_{k=2..n+1} (A000040(k) - A000040(ceiling(k/2))). - Jon Maiga, Jan 04 2019

Extensions

More terms from André F. Labossière, Mar 27 2006

A099731 This table shows the coefficients of sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to k, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies F(n)= Sum_{i=1..k} T(i,k) * n^(k-i)/(k-1)!.

Original entry on oeis.org

1, 1, -1, 1, -5, 10, 1, -12, 59, -90, 1, -22, 203, -830, 1320, 1, -35, 525, -3985, 15374, -23640, 1, -51, 1135, -13665, 93544, -342324, 523440, 1, -70, 2170, -37870, 399889, -2542540, 8997540, -13633200, 1, -92, 3794, -90440, 1356929, -13076588, 78896236, -271996080, 409852800, 1, -117, 6198, -193410
Offset: 1

Author

André F. Labossière, Nov 08 2004

Keywords

Examples

			F(13)=233; substituting n=13 in the formula of the k-th row we obtain k=7 and the coefficients
T(i,7) will be the following: 1,-51,1135,-13665,93544,-342324,523440,
=> F(13) = [13^6-51*13^5+1135*13^4-13665*13^3+93544*13^2-342324*13+523440]/6! = 233.
		

Crossrefs

A100492 Triangle read by rows giving the coefficients of general sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies F(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k) / (n-1)!.

Original entry on oeis.org

1, -1, -4, -3, 10, 49, 95, 83, 27, -90, -740, -2415, -4110, -3890, -1950, -405, 1320, 14054, 64116, 164059, 258461, 257604, 159070, 55755, 8505, -23640, -318684, -1881532, -6452300, -14294605, -21442540, -22106669, -15496012, -7078575, -1905120, -229635, 523440, 8474100, 61424596
Offset: 1

Author

André F. Labossière, Nov 22 2004

Keywords

Examples

			F(7) = (1/(7-1)!) * [ 7^(7-1) -{1+4*(7-2)+3*C(7-2,2)}*7^(7-2) +{10+49*(7-3)+95*C(7-3,2)+83*C(7-3,3) +27*C(7-3,4)}*7^(7-3) -{90+740*(7-4)+2415*C(7-4,2)+4110*C(7-4,3)}*7^(7-4) +... ]
= (1/6!) * [ 7^6 -{1+20+30}*7^5 +{10+196+570+332+27}*7^4 -{90+2220+7245+4110}*7^3 +{1320+28108 +64116}*7^2 -{23640+318684}*7 +{523440} ]
= (1/6!) * [ 7^6 -51*7^5 +1135*7^4 -13665*7^3 +93544*7^2 -342324*7 +523440 ]
= (1/720) * [ 117649 -857157 +2725135 -4687095 +4583656 -2396268 +523440 ] = 9360/720 = 13.
		

Crossrefs

A101559 This table (read by rows) shows the coefficients of sum formulas of n-th subfactorial numbers (A000166). The n-th row (n>=1) contains T(i,n) for i=1 to n, where T(i,n) satisfies Subf(n) = Sum_{i=1..n} T(i,n) * n^(n-i).

Original entry on oeis.org

1, 1, -2, 1, -4, 4, 1, -7, 15, -10, 1, -11, 42, -65, 34, 1, -16, 96, -267, 339, -154, 1, -22, 191, -831, 1891, -2103, 874, 1, -29, 344, -2151, 7600, -15023, 15171, -5914, 1, -37, 575, -4880, 24600, -74884, 133147, -124755, 46234, 1, -46, 907, -10025, 68153, -293925, 798564, -1305847, 1151331, -409114, 1, -56
Offset: 1

Author

André F. Labossière, Dec 06 2004

Keywords

Examples

			Subf(9) = [ 9^8 -37*9^7 +575*9^6 -4880*9^5 +24600*9^4 -74884*9^3 +133147*9^2 - 124755*9 +46234 ] = 14833.
		

A101560 Triangle read by rows giving the coefficients of general sum formulas of n-th Subfactorial numbers (A000166). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies Subf(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k).

Original entry on oeis.org

1, -2, -2, -1, 4, 11, 16, 11, 3, -10, -55, -147, -215, -179, -80, -15, 34, 305, 1247, 2910, 4224, 3904, 2245, 735, 105, -154, -1949, -10971, -35970, -76269, -109554, -108184, -72639, -31780, -8190, -945, 874, 14297, 103679, 443762, 1255671, 2484619, 3535727, 3654132, 2726787, 1434797
Offset: 1

Author

André F. Labossière, Dec 06 2004

Keywords

Examples

			Subf(7) = 7^(7 - 1) - {2 + 2*(7 - 2) + C(7 - 2,2)}*7^(7 - 2) + {4 + 11*(7 - 3) + 16*C(7 - 3,2) + 11*C(7 - 3,3) + 3*C(7 - 3,4)}*7^(7 - 3) - {10 + 55*(7 - 4) + 147*C(7 - 4,2) + 215*C(7 - 4,3)}*7^(7 - 4) + ...
= 7^6 - {2 + 10 + 10}*7^5 + {4 + 44 + 96 + 44 + 3}*7^4 - {10 + 165 + 441 + 215}*7^3 + {34 + 610 + 1247}*7^2 - {154 + 1949}*7 + {874}
= 7^6 - 22*7^5 + 191*7^4 - 831*7^3 + 1891*7^2 - 2103*7 + 874
= 117649 - 369754 + 458591 - 285033 + 92659 - 14721 + 874 = 265.
		

A101751 Table (read by rows) giving the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (k>=1, n>=2) contains T(i,k) for i=1 to k+1, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies Fact(n) = Sum_{i=1..k+1} T(i,k) * (n-1)^(k-i+1) / (2*k-2)!.

Original entry on oeis.org

1, 0, 1, 3, -6, 32, 264, -2024, 2400, 3420, 55800, -666540, 909720, 2570400, 90440, 13101144, 72406040, -3757930680, 13117344800, 72965762016, -261763004160
Offset: 1

Author

André F. Labossière, Dec 17 2004

Keywords

Examples

			Fact(8) = 5040; substituting n=8 in the formula of the k-th row we obtain k=4 and the coefficients
T(i,4) will be the following: 3420,55800,-666540,909720,2570400, => Fact(8) = [ 3420*7^4 +55800*7^3 -666540*7^2 +909720*7 +2570400 ]/6! = 7! =5040.
		

A102409 Even triangle n!. This table read by rows gives the coefficients of sum formulas of n-th factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+3, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies n! = Sum_{i=1..k+3} T(i,k) * n^(i-1) / (2*k-2)!.

Original entry on oeis.org

0, 1, 0, 0, 0, -20, 8, 0, 0, 20280, -6530, -1275, 362, 3, 0, -8749440, 21627600, -4871940, -66510, 48300, 390, 0, -261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0, -974260634054400, -1140185248443360, 353509119454680, -8136128999880, -3234018579750
Offset: 1

Author

André F. Labossière, Jan 07 2005

Keywords

Comments

Incidentally, the sum of signed coefficients for each k-th row is divisible by (2*k-2)!. Moreover, another variant (but an incomplete one, and sorted differently) of the above sequence is presented in A101751.

Examples

			Triangle starts:
0, 1, 0, 0;
0, -20, 8, 0, 0;
20280, -6530, -1275, 362, 3, 0;
-8749440, 21627600, -4871940, -66510, 48300, 390, 0;
-261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0;
...
11!=39916800; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing 11!.
=> 11! = [ -974260634054400 -1140185248443360*11 +353509119454680*11^2 -8136128999880*11^3 -3234018579750*11^4 +109743298560*11^5 +6053880420*11^6 +34067880*11^7 +9450*11^8 ]/10! = 39916800.