André F. Labossière has authored 45 sequences. Here are the ten most recent ones:
A119362
Combinatorial twin prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th twin primes or lesser: twin_prime(n) = 2^(n-6)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (i+2-n).
Original entry on oeis.org
32, 8, 32, 52, 208, 508, 2672, 9278, 71168, 258772, 2448352, 11401798, 123001112, 660768362, 7257835148, 50721144013, 643561620832, 4610932367548, 57562797069608, 547637465534282, 7281278491404272, 71412114145523938
Offset: 1
twin_prime(10) = [ 2^(10-6)/(10-1)! ] * [ 32*C(10-1,0)*(-7) + 8*C(10-1,1)*(-6) + 32*C(10-1,2)*(-5) + ... + 9278*C(10-1,7)*(0) + 71168*C(10-1,8)*(1) + 258772*C(10-1,9)*(2) ] = 31
A120315
Combinatorial prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th primes or lesser: prime(n) = 2^(n-5)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (1-(n-i)/2).
Original entry on oeis.org
32, 8, 32, 52, 208, 508, 2672, 9278, 56048, 304132, 1654552, 12649198, 79342112, 615363002, 5010269828, 43213043413, 393086195632, 3633203615548, 38586294965048, 389261740224662, 4344329090764472, 51205748753742838
Offset: 1
prime(7) = [ 2^(7-5)/(7-1)! ] * [ 32*C(7-1,0)*(1-(7-1)/2) + 8*C(7-1,1)*(1-(7-2)/2) + 32*C(7-1,2)*(1-(7-3)/2) + 52*C(7-1,3)*(1-(7-4)/2) + 208*C(7-1,4)*(1-(7-5)/2) + 508*C(7-1,5)*(1-(7-6)/2) + 2672*C(7-1,6)*(1-(7-7)/2) ] = 17
A115297
Treillis triangle: a triangle read by rows showing the coefficients of sum formulas of Treillis numbers (A115298). The k-th row (k>=1) contains a(n,k) for n=1 to (k+1)/2 (odd rows) and for n=1 to k/2 (even rows), where a(n,k) satisfies Sum_{n=1..[(k+1)/2_odd, k/2_even]} a(n,k). The last term of each row (and its only odd number) equals Prime(k+1)-2.
Original entry on oeis.org
1, 3, 2, 5, 4, 9, 2, 8, 11, 6, 10, 15, 4, 8, 14, 17, 6, 12, 16, 21, 2, 10, 14, 20, 27, 6, 12, 18, 26, 29, 4, 8, 16, 24, 28, 35, 6, 12, 22, 26, 34, 39, 2, 10, 18, 24, 32, 38, 41, 6, 16, 20, 30, 36, 40, 45, 4, 12, 18, 26, 34, 38, 44, 51, 10, 14, 24, 30, 36, 42, 50, 57, 6, 12, 20, 28, 32
Offset: 1
The computation for obtaining the coefficients of each row of the Treillis triangle are the paired differences between primes ascending and those descending. Only half-rows are to be considered for deducing such terms.
For the 13th row:
...................19-17,.23-13,.29-11,.31-7,.37-5,.41-3,.43-2
.....................2,.....10,....18,....24,...32,...38,...41
For the 14th row:
...................19-19,.23-17,.29-13,.31-11,.37-7,.41-5,.43-3,.47-2
.....................0,.....6,.....16,....20,....30,...36,...40,...45
From _Michael Somos_, Oct 17 2016: (Start)
Triangle:
1: 1,
2: 3,
3: 2, 5,
4: 4, 9,
5: 2, 8, 11,
6: 6, 10, 15,
7: 4, 8, 14, 17,
8: 6, 12, 16, 21,
... (End)
Original entry on oeis.org
1, 3, 7, 13, 21, 31, 43, 55, 73, 91, 115, 139, 165, 193, 227, 263, 301, 339, 381, 423, 471, 517, 569, 625, 685, 745, 809, 871, 937, 1011, 1089, 1167, 1247, 1335, 1425, 1515, 1611, 1707, 1809, 1915, 2023, 2135, 2249, 2363, 2479, 2601, 2735, 2865, 2997, 3129
Offset: 1
-
a:=n->add(ithprime(k)-ithprime(ceil(k/2)),k=2..n+1): seq(a(n),n=1..60); # Muniru A Asiru, Jan 04 2019
-
Accumulate[Table[Prime[n] - Prime[Ceiling[n/2]], {n, 2, 51}]] (* Jon Maiga, Jan 04 2019 *)
A099731
This table shows the coefficients of sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to k, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies F(n)= Sum_{i=1..k} T(i,k) * n^(k-i)/(k-1)!.
Original entry on oeis.org
1, 1, -1, 1, -5, 10, 1, -12, 59, -90, 1, -22, 203, -830, 1320, 1, -35, 525, -3985, 15374, -23640, 1, -51, 1135, -13665, 93544, -342324, 523440, 1, -70, 2170, -37870, 399889, -2542540, 8997540, -13633200, 1, -92, 3794, -90440, 1356929, -13076588, 78896236, -271996080, 409852800, 1, -117, 6198, -193410
Offset: 1
F(13)=233; substituting n=13 in the formula of the k-th row we obtain k=7 and the coefficients
T(i,7) will be the following: 1,-51,1135,-13665,93544,-342324,523440,
=> F(13) = [13^6-51*13^5+1135*13^4-13665*13^3+93544*13^2-342324*13+523440]/6! = 233.
A100492
Triangle read by rows giving the coefficients of general sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies F(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k) / (n-1)!.
Original entry on oeis.org
1, -1, -4, -3, 10, 49, 95, 83, 27, -90, -740, -2415, -4110, -3890, -1950, -405, 1320, 14054, 64116, 164059, 258461, 257604, 159070, 55755, 8505, -23640, -318684, -1881532, -6452300, -14294605, -21442540, -22106669, -15496012, -7078575, -1905120, -229635, 523440, 8474100, 61424596
Offset: 1
F(7) = (1/(7-1)!) * [ 7^(7-1) -{1+4*(7-2)+3*C(7-2,2)}*7^(7-2) +{10+49*(7-3)+95*C(7-3,2)+83*C(7-3,3) +27*C(7-3,4)}*7^(7-3) -{90+740*(7-4)+2415*C(7-4,2)+4110*C(7-4,3)}*7^(7-4) +... ]
= (1/6!) * [ 7^6 -{1+20+30}*7^5 +{10+196+570+332+27}*7^4 -{90+2220+7245+4110}*7^3 +{1320+28108 +64116}*7^2 -{23640+318684}*7 +{523440} ]
= (1/6!) * [ 7^6 -51*7^5 +1135*7^4 -13665*7^3 +93544*7^2 -342324*7 +523440 ]
= (1/720) * [ 117649 -857157 +2725135 -4687095 +4583656 -2396268 +523440 ] = 9360/720 = 13.
A101559
This table (read by rows) shows the coefficients of sum formulas of n-th subfactorial numbers (A000166). The n-th row (n>=1) contains T(i,n) for i=1 to n, where T(i,n) satisfies Subf(n) = Sum_{i=1..n} T(i,n) * n^(n-i).
Original entry on oeis.org
1, 1, -2, 1, -4, 4, 1, -7, 15, -10, 1, -11, 42, -65, 34, 1, -16, 96, -267, 339, -154, 1, -22, 191, -831, 1891, -2103, 874, 1, -29, 344, -2151, 7600, -15023, 15171, -5914, 1, -37, 575, -4880, 24600, -74884, 133147, -124755, 46234, 1, -46, 907, -10025, 68153, -293925, 798564, -1305847, 1151331, -409114, 1, -56
Offset: 1
Subf(9) = [ 9^8 -37*9^7 +575*9^6 -4880*9^5 +24600*9^4 -74884*9^3 +133147*9^2 - 124755*9 +46234 ] = 14833.
Cf.
A101560,
A000166,
A000110,
A101033,
A101032,
A000204,
A100492,
A099731,
A000045,
A094216,
A094638,
A000108.
A101560
Triangle read by rows giving the coefficients of general sum formulas of n-th Subfactorial numbers (A000166). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies Subf(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k).
Original entry on oeis.org
1, -2, -2, -1, 4, 11, 16, 11, 3, -10, -55, -147, -215, -179, -80, -15, 34, 305, 1247, 2910, 4224, 3904, 2245, 735, 105, -154, -1949, -10971, -35970, -76269, -109554, -108184, -72639, -31780, -8190, -945, 874, 14297, 103679, 443762, 1255671, 2484619, 3535727, 3654132, 2726787, 1434797
Offset: 1
Subf(7) = 7^(7 - 1) - {2 + 2*(7 - 2) + C(7 - 2,2)}*7^(7 - 2) + {4 + 11*(7 - 3) + 16*C(7 - 3,2) + 11*C(7 - 3,3) + 3*C(7 - 3,4)}*7^(7 - 3) - {10 + 55*(7 - 4) + 147*C(7 - 4,2) + 215*C(7 - 4,3)}*7^(7 - 4) + ...
= 7^6 - {2 + 10 + 10}*7^5 + {4 + 44 + 96 + 44 + 3}*7^4 - {10 + 165 + 441 + 215}*7^3 + {34 + 610 + 1247}*7^2 - {154 + 1949}*7 + {874}
= 7^6 - 22*7^5 + 191*7^4 - 831*7^3 + 1891*7^2 - 2103*7 + 874
= 117649 - 369754 + 458591 - 285033 + 92659 - 14721 + 874 = 265.
Cf.
A101559,
A000166,
A000110,
A101033,
A101032,
A000204,
A100492,
A099731,
A000045,
A094216,
A094638,
A000108.
A101751
Table (read by rows) giving the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (k>=1, n>=2) contains T(i,k) for i=1 to k+1, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies Fact(n) = Sum_{i=1..k+1} T(i,k) * (n-1)^(k-i+1) / (2*k-2)!.
Original entry on oeis.org
1, 0, 1, 3, -6, 32, 264, -2024, 2400, 3420, 55800, -666540, 909720, 2570400, 90440, 13101144, 72406040, -3757930680, 13117344800, 72965762016, -261763004160
Offset: 1
Fact(8) = 5040; substituting n=8 in the formula of the k-th row we obtain k=4 and the coefficients
T(i,4) will be the following: 3420,55800,-666540,909720,2570400, => Fact(8) = [ 3420*7^4 +55800*7^3 -666540*7^2 +909720*7 +2570400 ]/6! = 7! =5040.
A102409
Even triangle n!. This table read by rows gives the coefficients of sum formulas of n-th factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+3, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies n! = Sum_{i=1..k+3} T(i,k) * n^(i-1) / (2*k-2)!.
Original entry on oeis.org
0, 1, 0, 0, 0, -20, 8, 0, 0, 20280, -6530, -1275, 362, 3, 0, -8749440, 21627600, -4871940, -66510, 48300, 390, 0, -261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0, -974260634054400, -1140185248443360, 353509119454680, -8136128999880, -3234018579750
Offset: 1
Triangle starts:
0, 1, 0, 0;
0, -20, 8, 0, 0;
20280, -6530, -1275, 362, 3, 0;
-8749440, 21627600, -4871940, -66510, 48300, 390, 0;
-261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0;
...
11!=39916800; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing 11!.
=> 11! = [ -974260634054400 -1140185248443360*11 +353509119454680*11^2 -8136128999880*11^3 -3234018579750*11^4 +109743298560*11^5 +6053880420*11^6 +34067880*11^7 +9450*11^8 ]/10! = 39916800.
Cf.
A102410,
A008276,
A094216,
A000142,
A094638,
A101751,
A102411,
A102412,
A101752,
A003422,
A101559,
A101032,
A099731.
Comments